Internal Cumulated Dose of Toxic Metal(loid)s in a Population Residing near Naturally Occurring Radioactive Material Waste Stacks and an Industrial Heavily Polluted Area with High Mortality Rates in Spain.
Manuel Contreras-Llanes, Juan Alguacil, Rocío Capelo, José Luis Gómez-Ariza, Javier García-Pérez, Beatriz Pérez-Gómez, Piedad Martin-Olmedo, Vanessa Santos-Sánchez
{"title":"Internal Cumulated Dose of Toxic Metal(loid)s in a Population Residing near Naturally Occurring Radioactive Material Waste Stacks and an Industrial Heavily Polluted Area with High Mortality Rates in Spain.","authors":"Manuel Contreras-Llanes, Juan Alguacil, Rocío Capelo, José Luis Gómez-Ariza, Javier García-Pérez, Beatriz Pérez-Gómez, Piedad Martin-Olmedo, Vanessa Santos-Sánchez","doi":"10.3390/jox15010029","DOIUrl":null,"url":null,"abstract":"<p><p>Huelva is a city in SW Spain with 150,000 inhabitants, located in the proximity of two heavy chemical industry complexes, the highest naturally occurring radioactive material (NORM) waste (phosphogypsum) stacks of Europe and a highly polluted estuary, with elevated cardiovascular disease and cancer mortality rates. This study analyses the association between cumulated exposure levels to 16 metal(loid)s (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Tl, U, V, and Zn) measured in the toenail of a sample (<i>n</i> = 55 participants) of the general control population of Huelva City who were involved in the MCC-Spain study and the spatial proximity patterns to the local polluting sources. Residents of the city of Huelva have higher levels of Fe, Ni, Cr, Se, As, and Co in their toenails compared to the levels found in populations with similar characteristics living in non-polluted areas. Moreover, the highest concentrations of As, Pb, Cd, Mo, and Se were found in toenails of participants living near the NORM waste stack, while the highest Cu, Zn, and Al contents corresponded to people residing near the industrial area. The spatial distribution of most of the metal(loid)s studied appears to be mainly controlled by anthropogenic factors.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857056/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15010029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Huelva is a city in SW Spain with 150,000 inhabitants, located in the proximity of two heavy chemical industry complexes, the highest naturally occurring radioactive material (NORM) waste (phosphogypsum) stacks of Europe and a highly polluted estuary, with elevated cardiovascular disease and cancer mortality rates. This study analyses the association between cumulated exposure levels to 16 metal(loid)s (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Tl, U, V, and Zn) measured in the toenail of a sample (n = 55 participants) of the general control population of Huelva City who were involved in the MCC-Spain study and the spatial proximity patterns to the local polluting sources. Residents of the city of Huelva have higher levels of Fe, Ni, Cr, Se, As, and Co in their toenails compared to the levels found in populations with similar characteristics living in non-polluted areas. Moreover, the highest concentrations of As, Pb, Cd, Mo, and Se were found in toenails of participants living near the NORM waste stack, while the highest Cu, Zn, and Al contents corresponded to people residing near the industrial area. The spatial distribution of most of the metal(loid)s studied appears to be mainly controlled by anthropogenic factors.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.