Quasi-static Path Planning for Continuum Robots By Sampling on Implicit Manifold.

Yifan Wang, Yue Chen
{"title":"Quasi-static Path Planning for Continuum Robots By Sampling on Implicit Manifold.","authors":"Yifan Wang, Yue Chen","doi":"10.1109/icra57147.2024.10611372","DOIUrl":null,"url":null,"abstract":"<p><p>Continuum robots (CR) offer excellent dexterity and compliance in contrast to rigid-link robots, making them suitable for navigating through, and interacting with, confined environments. However, the study of path planning for CRs while considering external elastic contact is limited. The challenge lies in the fact that CRs can have multiple possible configurations when in contact, rendering the forward kinematics not well-defined, and characterizing the set of feasible robot configurations is non-trivial. In this paper, we propose to perform quasi-static path planning on an implicit manifold. We model elastic obstacles as external potential fields and formulate the robot statics in the potential field as the extremal trajectory of an optimal control problem. We show that the set of stable robot configurations is a smooth manifold diffeomorphic to a submanifold embedded in the product space of the CR actuation and base internal wrench. We then propose to perform path planning on this manifold using AtlasRRT*, a sampling-based planner dedicated to planning on implicit manifolds. Simulations in different operation scenarios were conducted and the results show that the proposed planner outperforms Euclidean space planners in terms of success rate and computational efficiency.</p>","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"2024 ","pages":"8728-8734"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra57147.2024.10611372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Continuum robots (CR) offer excellent dexterity and compliance in contrast to rigid-link robots, making them suitable for navigating through, and interacting with, confined environments. However, the study of path planning for CRs while considering external elastic contact is limited. The challenge lies in the fact that CRs can have multiple possible configurations when in contact, rendering the forward kinematics not well-defined, and characterizing the set of feasible robot configurations is non-trivial. In this paper, we propose to perform quasi-static path planning on an implicit manifold. We model elastic obstacles as external potential fields and formulate the robot statics in the potential field as the extremal trajectory of an optimal control problem. We show that the set of stable robot configurations is a smooth manifold diffeomorphic to a submanifold embedded in the product space of the CR actuation and base internal wrench. We then propose to perform path planning on this manifold using AtlasRRT*, a sampling-based planner dedicated to planning on implicit manifolds. Simulations in different operation scenarios were conducted and the results show that the proposed planner outperforms Euclidean space planners in terms of success rate and computational efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与刚性连接机器人相比,连续机器人(CR)具有出色的灵巧性和顺应性,因此适合在密闭环境中航行并与之互动。然而,考虑到外部弹性接触的 CR 路径规划研究还很有限。其挑战在于,CR 在接触时可能有多种可能的配置,这使得前向运动学没有明确定义,而表征可行的机器人配置集也并非易事。在本文中,我们提出在隐含流形上执行准静态路径规划。我们将弹性障碍物建模为外部势场,并将势场中的机器人静态表述为最优控制问题的极值轨迹。我们证明,稳定的机器人配置集是一个平滑流形,与嵌入 CR 驱动和基础内部扳手乘积空间的子流形相差形。然后,我们建议使用 AtlasRRT* 在该流形上执行路径规划,AtlasRRT* 是一种基于采样的规划器,专门用于在隐含流形上进行规划。我们在不同的操作场景下进行了模拟,结果表明,所提出的规划器在成功率和计算效率方面都优于欧几里得空间规划器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Towards a Unified Approach for Continuously-Variable Impedance Control of Powered Prosthetic Legs over Walking Speeds and Inclines. Cooperative vs. Teleoperation Control of the Steady Hand Eye Robot with Adaptive Sclera Force Control: A Comparative Study. Bevel-Tip Needle Deflection Modeling, Simulation, and Validation in Multi-Layer Tissues. Exploring the Needle Tip Interaction Force with Retinal Tissue Deformation in Vitreoretinal Surgery. Fully Distributed Shape Sensing of a Flexible Surgical Needle Using Optical Frequency Domain Reflectometry for Prostate Interventions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1