Training and onboarding initiatives in high energy physics experiments.

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers in Big Data Pub Date : 2025-02-10 eCollection Date: 2025-01-01 DOI:10.3389/fdata.2025.1497622
Allison Reinsvold Hall, Nicole Skidmore, Gabriele Benelli, Ben Carlson, Claire David, Jonathan Davies, Wouter Deconinck, David DeMuth, Peter Elmer, Rocky Bala Garg, Stephan Hageböck, Killian Lieret, Valeriia Lukashenko, Sudhir Malik, Andy Morris, Heidi Schellman, Graeme A Stewart, Jason Veatch, Michel Hernandez Villanueva
{"title":"Training and onboarding initiatives in high energy physics experiments.","authors":"Allison Reinsvold Hall, Nicole Skidmore, Gabriele Benelli, Ben Carlson, Claire David, Jonathan Davies, Wouter Deconinck, David DeMuth, Peter Elmer, Rocky Bala Garg, Stephan Hageböck, Killian Lieret, Valeriia Lukashenko, Sudhir Malik, Andy Morris, Heidi Schellman, Graeme A Stewart, Jason Veatch, Michel Hernandez Villanueva","doi":"10.3389/fdata.2025.1497622","DOIUrl":null,"url":null,"abstract":"<p><p>In this article we document the current analysis software training and onboarding activities in several High Energy Physics (HEP) experiments: ATLAS, CMS, LHCb, Belle II and DUNE. Fast and efficient onboarding of new collaboration members is increasingly important for HEP experiments. With rapidly increasing data volumes and larger collaborations the analyses and consequently, the related software, become ever more complex. This necessitates structured onboarding and training. Recognizing this, a meeting series was held by the HEP Software Foundation (HSF) in 2022 for experiments to showcase their initiatives. Here we document and analyze these in an attempt to determine a set of key considerations for future HEP experiments.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"8 ","pages":"1497622"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847898/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2025.1497622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we document the current analysis software training and onboarding activities in several High Energy Physics (HEP) experiments: ATLAS, CMS, LHCb, Belle II and DUNE. Fast and efficient onboarding of new collaboration members is increasingly important for HEP experiments. With rapidly increasing data volumes and larger collaborations the analyses and consequently, the related software, become ever more complex. This necessitates structured onboarding and training. Recognizing this, a meeting series was held by the HEP Software Foundation (HSF) in 2022 for experiments to showcase their initiatives. Here we document and analyze these in an attempt to determine a set of key considerations for future HEP experiments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
期刊最新文献
Deep learning for accurate classification of conifer pollen grains: enhancing species identification in palynology. Editorial: Machine learning and immersive technologies for user-centered digital healthcare innovation. Training and onboarding initiatives in high energy physics experiments. Big data analytics and AI as success factors for online video streaming platforms. Editorial: Visualizing big culture and history data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1