Dissolution Inhibition Strategy Stabilizes Manganese Prussian Blue Analogs for High-Energy Sodium-Ion Batteries

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-02-25 DOI:10.1002/adfm.202423867
Yichao Wang, Cheng Yang, Lingbo Yao, Ning Jiang, Jiahe Liu, Shouyu Sun, Xinyu Wang, Jianhua Yang, Yu Liu
{"title":"Dissolution Inhibition Strategy Stabilizes Manganese Prussian Blue Analogs for High-Energy Sodium-Ion Batteries","authors":"Yichao Wang,&nbsp;Cheng Yang,&nbsp;Lingbo Yao,&nbsp;Ning Jiang,&nbsp;Jiahe Liu,&nbsp;Shouyu Sun,&nbsp;Xinyu Wang,&nbsp;Jianhua Yang,&nbsp;Yu Liu","doi":"10.1002/adfm.202423867","DOIUrl":null,"url":null,"abstract":"<p>The manganese Prussian blue analogs (Mn-PBAs) are regarded as scalable, low-cost, and high-energy cathodes for sodium-ions batteries (SIBs). Unfortunately, Mn-PBAs suffer from severe dissolution, particularly of manganese (Mn), which has been shown will exacerbate the structural collapse of cathode materials and electrolyte decomposition, significantly reducing the cycling stability of Mn-PBAs-based batteries. Herein, an innovative dissolution inhibition strategy is proposed by utilizing solvents that inherently exhibit lower solubility for Mn-PBAs as the electrolyte. This approach successfully establishes a Mn-PBAs dissolution-diffusion inhibition interface, thereby kinetically preventing the dissolution of Mn-PBAs and addressing the associated issues. The interaction energy between Mn-PBAs and the electrolyte, along with analyses of mean square displacement and van Hove function curves, theoretically validates the successful construction of this inhibition interface. In the new electrolyte, the Mn-PBAs can provide a specific capacity of ≈154 mAh g<sup>−1</sup> (≈510 Wh kg<sup>−1</sup>) and can be cycled at a current density of 2 C for &gt;1000 cycles, demonstrating excellent electrochemical performance in the new electrolyte. This pioneering work can forge new avenues for stabilizing high-energy Mn-PBAs and holds substantial promise for practical applications.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 28","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202423867","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The manganese Prussian blue analogs (Mn-PBAs) are regarded as scalable, low-cost, and high-energy cathodes for sodium-ions batteries (SIBs). Unfortunately, Mn-PBAs suffer from severe dissolution, particularly of manganese (Mn), which has been shown will exacerbate the structural collapse of cathode materials and electrolyte decomposition, significantly reducing the cycling stability of Mn-PBAs-based batteries. Herein, an innovative dissolution inhibition strategy is proposed by utilizing solvents that inherently exhibit lower solubility for Mn-PBAs as the electrolyte. This approach successfully establishes a Mn-PBAs dissolution-diffusion inhibition interface, thereby kinetically preventing the dissolution of Mn-PBAs and addressing the associated issues. The interaction energy between Mn-PBAs and the electrolyte, along with analyses of mean square displacement and van Hove function curves, theoretically validates the successful construction of this inhibition interface. In the new electrolyte, the Mn-PBAs can provide a specific capacity of ≈154 mAh g−1 (≈510 Wh kg−1) and can be cycled at a current density of 2 C for >1000 cycles, demonstrating excellent electrochemical performance in the new electrolyte. This pioneering work can forge new avenues for stabilizing high-energy Mn-PBAs and holds substantial promise for practical applications.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高能量钠离子电池中普鲁士蓝锰类似物的溶解抑制策略
锰普鲁士蓝类似物(Mn-PBAs)被认为是钠离子电池(sib)的可扩展、低成本和高能量阴极。不幸的是,Mn- pbas遭受严重的溶解,特别是锰(Mn)的溶解,这将加剧阴极材料的结构崩溃和电解质分解,显着降低Mn- pbas基电池的循环稳定性。本文提出了一种创新的溶解抑制策略,即利用固有地对Mn-PBAs具有较低溶解度的溶剂作为电解质。该方法成功建立了Mn-PBAs的溶解-扩散抑制界面,从而从动力学上阻止了Mn-PBAs的溶解,并解决了相关问题。Mn-PBAs与电解质的相互作用能以及均方位移和van Hove函数曲线的分析从理论上验证了该抑制界面的成功构建。在新电解质中,Mn-PBAs的比容量可达≈154 mAh g - 1(≈510 Wh kg - 1),并可在2℃的电流密度下循环约1000次,在新电解质中表现出优异的电化学性能。这项开创性的工作可以为稳定高能Mn-PBAs开辟新的途径,并为实际应用提供了巨大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Temperature‐Induced Nonvolatile Switching through Thermal Hysteresis in a Gd 3 Fe 5 O 12 /Ho 3 Fe 5 O 12 Exchange‐Coupled Rare‐Earth Iron Garnet Bilayer Unified Bulk and Interface Control of Tin‐Lead Perovskite via a Molecular Bridge for Efficient All‐Perovskite Tandem Solar Cells Engineering Lewis‐Acidic Fields to Couple Proton Supply With Nitrate Activation: Boosting Neutral Kinetics Advanced Multifunctional Vitrimer‐Based Composites for the Next Generation: Innovative Design, Performance Breakthroughs, and Intelligent Application Frontiers Electro‐Chemo‐Mechanical Coupling in Hf 0.5 Zr 0.5 O 2 Ferroionic Heterostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1