Yunxiang Zhao, Jijun Yu, Yixin Su, You Shu, Enhao Ma, Jing Wang, Shuyang Jiang, Congwen Wei, Dongsheng Li, Zhen Huang, Gong Cheng, Hongguang Ren, Jiannan Feng
{"title":"A unified deep framework for peptide–major histocompatibility complex–T cell receptor binding prediction","authors":"Yunxiang Zhao, Jijun Yu, Yixin Su, You Shu, Enhao Ma, Jing Wang, Shuyang Jiang, Congwen Wei, Dongsheng Li, Zhen Huang, Gong Cheng, Hongguang Ren, Jiannan Feng","doi":"10.1038/s42256-025-01002-0","DOIUrl":null,"url":null,"abstract":"<p>Antigen peptides that are presented by a major histocompatibility complex (MHC) and recognized by a T cell receptor (TCR) have an essential role in immunotherapy. Although substantial progress has been made in predicting MHC presentation, accurately predicting the binding interactions between antigen peptides, MHCs and TCRs remains a major computational challenge. In this paper, we propose a unified deep framework (called UniPMT) for peptide, MHC and TCR binding prediction to predict the binding between the peptide and the CDR3 of TCR β in general, presented by class I MHCs. UniPMT is comprehensively validated by a series of experiments and achieved state-of-the-art performance in the peptide–MHC–TCR, peptide–MHC and peptide–TCR binding prediction tasks with up to 15% improvements in area under the precision–recall curve taking the peptide–MHC–TCR binding prediction task as an example. In practical applications, UniPMT shows strong predictive power, correlates well with T cell clonal expansion and outperforms existing methods in neoantigen-specific binding prediction with up to 17.62% improvements in area under the precision–recall curve on experimentally validated datasets. Moreover, UniPMT provides interpretable insights into the identification of key binding sites and the quantification of peptide–MHC–TCR binding probabilities. In summary, UniPMT shows great potential to serve as a useful tool for antigen peptide discovery, disease immunotherapy and neoantigen vaccine design.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"51 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-025-01002-0","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Antigen peptides that are presented by a major histocompatibility complex (MHC) and recognized by a T cell receptor (TCR) have an essential role in immunotherapy. Although substantial progress has been made in predicting MHC presentation, accurately predicting the binding interactions between antigen peptides, MHCs and TCRs remains a major computational challenge. In this paper, we propose a unified deep framework (called UniPMT) for peptide, MHC and TCR binding prediction to predict the binding between the peptide and the CDR3 of TCR β in general, presented by class I MHCs. UniPMT is comprehensively validated by a series of experiments and achieved state-of-the-art performance in the peptide–MHC–TCR, peptide–MHC and peptide–TCR binding prediction tasks with up to 15% improvements in area under the precision–recall curve taking the peptide–MHC–TCR binding prediction task as an example. In practical applications, UniPMT shows strong predictive power, correlates well with T cell clonal expansion and outperforms existing methods in neoantigen-specific binding prediction with up to 17.62% improvements in area under the precision–recall curve on experimentally validated datasets. Moreover, UniPMT provides interpretable insights into the identification of key binding sites and the quantification of peptide–MHC–TCR binding probabilities. In summary, UniPMT shows great potential to serve as a useful tool for antigen peptide discovery, disease immunotherapy and neoantigen vaccine design.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.