{"title":"A lightweight shape-memory alloy with superior temperature-fluctuation resistance","authors":"Yuxin Song, Sheng Xu, Shunsuke Sato, Inho Lee, Xiao Xu, Toshihiro Omori, Makoto Nagasako, Takuro Kawasaki, Ryoji Kiyanagi, Stefanus Harjo, Wu Gong, Tomáš Grabec, Pavla Stoklasová, Ryosuke Kainuma","doi":"10.1038/s41586-024-08583-7","DOIUrl":null,"url":null,"abstract":"In advanced applications such as aerospace and space exploration, materials must balance lightness, functionality and extreme thermal fluctuation resistance1,2. Shape-memory alloys show promise with strength, toughness and substantial strain recovery due to superelasticity, but maintaining low mass and effective operation at cryogenic temperatures is challenging3–6. We hereby introduce a new shape-memory alloy that adheres to these stringent criteria. Predominantly composed of Ti and Al with a chemical composition of Ti75.25Al20Cr4.75, this alloy is characterized by a low density (4.36 × 103 kg m−3) and a high specific strength (185 × 103 Pa m3 per kg) at room temperature, while showing excellent superelasticity. The superelasticity, owing to a reversible stress-induced phase transformation from an ordered body-centred cubic parent phase to an ordered orthorhombic martensite, allows for a recoverable strain exceeding 7%. This functionality persists across a broad range of temperatures, from deep cryogenic 4.2 K to above room temperature, arising from an unconventional temperature dependence of transformation stresses. Below a certain threshold during cooling, the critical transformation stress inversely correlates with temperature. We interpret this behaviour from the perspective of a temperature-dependent anomalous lattice instability of the parent phase. This alloy holds potential in everyday appliances requiring flexible strain accommodation, as well as components designed for extreme environmental conditions such as deep space and liquefied gases. A Ti–Al-based shape-memory alloy adhering to the stringent criteria of lightness, functionality and extreme thermal fluctuation resistance is introduced, showing excellent superelasticity with a recoverable strain exceeding 7% and an ultra-wide temperature window from 4.2 K to 400 K.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"638 8052","pages":"965-971"},"PeriodicalIF":50.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-024-08583-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08583-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In advanced applications such as aerospace and space exploration, materials must balance lightness, functionality and extreme thermal fluctuation resistance1,2. Shape-memory alloys show promise with strength, toughness and substantial strain recovery due to superelasticity, but maintaining low mass and effective operation at cryogenic temperatures is challenging3–6. We hereby introduce a new shape-memory alloy that adheres to these stringent criteria. Predominantly composed of Ti and Al with a chemical composition of Ti75.25Al20Cr4.75, this alloy is characterized by a low density (4.36 × 103 kg m−3) and a high specific strength (185 × 103 Pa m3 per kg) at room temperature, while showing excellent superelasticity. The superelasticity, owing to a reversible stress-induced phase transformation from an ordered body-centred cubic parent phase to an ordered orthorhombic martensite, allows for a recoverable strain exceeding 7%. This functionality persists across a broad range of temperatures, from deep cryogenic 4.2 K to above room temperature, arising from an unconventional temperature dependence of transformation stresses. Below a certain threshold during cooling, the critical transformation stress inversely correlates with temperature. We interpret this behaviour from the perspective of a temperature-dependent anomalous lattice instability of the parent phase. This alloy holds potential in everyday appliances requiring flexible strain accommodation, as well as components designed for extreme environmental conditions such as deep space and liquefied gases. A Ti–Al-based shape-memory alloy adhering to the stringent criteria of lightness, functionality and extreme thermal fluctuation resistance is introduced, showing excellent superelasticity with a recoverable strain exceeding 7% and an ultra-wide temperature window from 4.2 K to 400 K.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.