The substrate configuration influences pollutant removal in constructed wetlands: from the aspects of submerged status of substrate and carbon-felt distribution
{"title":"The substrate configuration influences pollutant removal in constructed wetlands: from the aspects of submerged status of substrate and carbon-felt distribution","authors":"Xiang-Zheng Li, Tong Wang, Ting Yang, Xue Li, Lin-Wei Wu, Lin-Lan Zhuang, Jian Zhang","doi":"10.1016/j.watres.2025.123396","DOIUrl":null,"url":null,"abstract":"Redox regulation dominates the pollutant removal in constructed wetlands (CWs). To enhance efficient and cost-effective nitrogen removal, this study intended to build an unsaturated zone and add carbon-felt material for electron donor/acceptor adjustment. The unsaturated zone heights (0, 10, 20 cm) and carbon-felt distribution patterns (evenly scattered (CW<sub>SE</sub>), continuously linked (CW<sub>L</sub>), and head-tail linked like microbial fuel cells (CW<sub>MFC</sub>)) were simultaneously adjusted. Moreover, their effects and underlying microbial mechanisms on water purification were investigated. Results indicated that CWs with a 20 cm unsaturated zone achieved over 99% ammonia nitrogen removal. CW<sub>SE</sub> facilitated optimal pollutant-microbe contact, enabling efficient in-situ electron utilization for 64.27% total nitrogen removal through simultaneous nitrification-denitrification and anammox. In CW<sub>L</sub>, continuous carbon-felt distribution allowed efficient electron transport at a relatively macro-area and enhanced electron consumption by oxygen at the surface, leading to superior ammonia oxidation (82.97%) in the middle area of CW<sub>L</sub>. Conversely, CW<sub>MFC</sub> facilitated direct electron transfer through the whole CW, enriched <em>Geobacter</em> at the top and <em>Vibrio</em> at the bottom, achieving 84.23% total nitrogen removal through nitrification-denitrification under high oxygenation. This study elucidated microbial community niche differentiation in CWs mediated by carbon-felt electron transport and proposed optimal application scenarios for different carbon-felt configurations.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"1 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123396","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Redox regulation dominates the pollutant removal in constructed wetlands (CWs). To enhance efficient and cost-effective nitrogen removal, this study intended to build an unsaturated zone and add carbon-felt material for electron donor/acceptor adjustment. The unsaturated zone heights (0, 10, 20 cm) and carbon-felt distribution patterns (evenly scattered (CWSE), continuously linked (CWL), and head-tail linked like microbial fuel cells (CWMFC)) were simultaneously adjusted. Moreover, their effects and underlying microbial mechanisms on water purification were investigated. Results indicated that CWs with a 20 cm unsaturated zone achieved over 99% ammonia nitrogen removal. CWSE facilitated optimal pollutant-microbe contact, enabling efficient in-situ electron utilization for 64.27% total nitrogen removal through simultaneous nitrification-denitrification and anammox. In CWL, continuous carbon-felt distribution allowed efficient electron transport at a relatively macro-area and enhanced electron consumption by oxygen at the surface, leading to superior ammonia oxidation (82.97%) in the middle area of CWL. Conversely, CWMFC facilitated direct electron transfer through the whole CW, enriched Geobacter at the top and Vibrio at the bottom, achieving 84.23% total nitrogen removal through nitrification-denitrification under high oxygenation. This study elucidated microbial community niche differentiation in CWs mediated by carbon-felt electron transport and proposed optimal application scenarios for different carbon-felt configurations.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.