Jinping Wang, Kuoran Xing, Guoying Zhang, Zhiyang Li, Xianguang Ding, David Tai Leong
{"title":"Surface Components and Biological Interactions of Extracellular Vesicles","authors":"Jinping Wang, Kuoran Xing, Guoying Zhang, Zhiyang Li, Xianguang Ding, David Tai Leong","doi":"10.1021/acsnano.4c16854","DOIUrl":null,"url":null,"abstract":"Extracellular vesicles (EVs) are critical mediators of intercellular communication, carrying bioactive cargo and displaying diverse surface components that reflect their cellular origins and functions. The EV surface, composed of proteins, lipids, and glycocalyx elements, plays a pivotal role in targeting recipient cells, mediating biological interactions, and enabling selective cargo delivery. This review comprehensively examined the molecular architecture of EV surfaces, linking their biogenesis to functional diversity, and highlights their therapeutic and diagnostic potential in diseases such as cancer and cardiovascular disorders. Additionally, we explore emerging applications of EVs, including machine-learning-assisted analysis, chemical integration, and cross-system combinations. The review also discusses some key challenges in the clinical translation of EV-related technologies.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"51 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16854","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles (EVs) are critical mediators of intercellular communication, carrying bioactive cargo and displaying diverse surface components that reflect their cellular origins and functions. The EV surface, composed of proteins, lipids, and glycocalyx elements, plays a pivotal role in targeting recipient cells, mediating biological interactions, and enabling selective cargo delivery. This review comprehensively examined the molecular architecture of EV surfaces, linking their biogenesis to functional diversity, and highlights their therapeutic and diagnostic potential in diseases such as cancer and cardiovascular disorders. Additionally, we explore emerging applications of EVs, including machine-learning-assisted analysis, chemical integration, and cross-system combinations. The review also discusses some key challenges in the clinical translation of EV-related technologies.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.