{"title":"Advancing 6G: Survey for Explainable AI on Communications and Network Slicing","authors":"Haochen Sun;Yifan Liu;Ahmed Al-Tahmeesschi;Avishek Nag;Mohadeseh Soleimanpour;Berk Canberk;Hüseyin Arslan;Hamed Ahmadi","doi":"10.1109/OJCOMS.2025.3534626","DOIUrl":null,"url":null,"abstract":"The unprecedented advancement of Artificial Intelligence (AI) has positioned Explainable AI (XAI) as a critical enabler in addressing the complexities of next-generation wireless communications. With the evolution of the 6G networks, characterized by ultra-low latency, massive data rates, and intricate network structures, the need for transparency, interpretability, and fairness in AI-driven decision-making has become more urgent than ever. This survey provides a comprehensive review of the current state and future potential of XAI in communications, with a focus on network slicing, a fundamental technology for resource management in 6G. By systematically categorizing XAI methodologies–ranging from modelagnostic to model-specific approaches, and from pre-model to post-model strategies–this paper identifies their unique advantages, limitations, and applications in wireless communications. Moreover, the survey emphasizes the role of XAI in network slicing for vehicular network, highlighting its ability to enhance transparency and reliability in scenarios requiring real-time decision-making and high-stakes operational environments. Real-world use cases are examined to illustrate how XAI-driven systems can improve resource allocation, facilitate fault diagnosis, and meet regulatory requirements for ethical AI deployment. By addressing the inherent challenges of applying XAI in complex, dynamic networks, this survey offers critical insights into the convergence of XAI and 6G technologies. Future research directions, including scalability, real-time applicability, and interdisciplinary integration, are discussed, establishing a foundation for advancing transparent and trustworthy AI in 6G communications systems.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"1372-1412"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10854503","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10854503/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The unprecedented advancement of Artificial Intelligence (AI) has positioned Explainable AI (XAI) as a critical enabler in addressing the complexities of next-generation wireless communications. With the evolution of the 6G networks, characterized by ultra-low latency, massive data rates, and intricate network structures, the need for transparency, interpretability, and fairness in AI-driven decision-making has become more urgent than ever. This survey provides a comprehensive review of the current state and future potential of XAI in communications, with a focus on network slicing, a fundamental technology for resource management in 6G. By systematically categorizing XAI methodologies–ranging from modelagnostic to model-specific approaches, and from pre-model to post-model strategies–this paper identifies their unique advantages, limitations, and applications in wireless communications. Moreover, the survey emphasizes the role of XAI in network slicing for vehicular network, highlighting its ability to enhance transparency and reliability in scenarios requiring real-time decision-making and high-stakes operational environments. Real-world use cases are examined to illustrate how XAI-driven systems can improve resource allocation, facilitate fault diagnosis, and meet regulatory requirements for ethical AI deployment. By addressing the inherent challenges of applying XAI in complex, dynamic networks, this survey offers critical insights into the convergence of XAI and 6G technologies. Future research directions, including scalability, real-time applicability, and interdisciplinary integration, are discussed, establishing a foundation for advancing transparent and trustworthy AI in 6G communications systems.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.