Bandit-Based Multiple Access Approach for Multi-Link Operation in Heterogeneous Dynamic Networks

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Communications Society Pub Date : 2025-01-28 DOI:10.1109/OJCOMS.2025.3535619
Mingqi Han;Zhenyu Chen;Xinghua Sun
{"title":"Bandit-Based Multiple Access Approach for Multi-Link Operation in Heterogeneous Dynamic Networks","authors":"Mingqi Han;Zhenyu Chen;Xinghua Sun","doi":"10.1109/OJCOMS.2025.3535619","DOIUrl":null,"url":null,"abstract":"The Multi-Link Operation (MLO) is a key technique in the upcoming IEEE 802.11be Extremely High Throughput standard, also known as Wi-Fi 7. MLO enables Multi-Link Devices (MLDs) to utilize multiple communication links simultaneously, thereby enhancing throughput. However, research has shown that MLO performance deteriorates in heterogeneous networks coexisting with Single-Link Devices (SLDs), especially in asymmetric scenarios. In this paper, we address the multiple access problem for MLDs in both homogeneous and heterogeneous dynamic uplink networks. We propose a Multi-Player Combinatorial Upper Confidence Bound (MP-CUCB) algorithm designed for Simultaneous Transmit and Receive (STR) MLDs to better exploit the potential of MLO. The MP-CUCB algorithm enables each MLD to independently make access decisions to improve throughput while guaranteeing the fairness requirements of SLDs. Simulation results demonstrate that the MP-CUCB algorithm can: 1) better utilize the potential of MLO, achieving a 20% improvement compared to the standard CSMA scheme while ensuring fairness requirements for both MLDs and SLDs; 2) address the severe performance degradation issue in asymmetric heterogeneous scenarios, achieving a 33% improvement compared to the standard CSMA; 3) effectively adapt to dynamic networks with new accessing nodes, achieving short convergence times.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"1423-1437"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10856222","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10856222/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Multi-Link Operation (MLO) is a key technique in the upcoming IEEE 802.11be Extremely High Throughput standard, also known as Wi-Fi 7. MLO enables Multi-Link Devices (MLDs) to utilize multiple communication links simultaneously, thereby enhancing throughput. However, research has shown that MLO performance deteriorates in heterogeneous networks coexisting with Single-Link Devices (SLDs), especially in asymmetric scenarios. In this paper, we address the multiple access problem for MLDs in both homogeneous and heterogeneous dynamic uplink networks. We propose a Multi-Player Combinatorial Upper Confidence Bound (MP-CUCB) algorithm designed for Simultaneous Transmit and Receive (STR) MLDs to better exploit the potential of MLO. The MP-CUCB algorithm enables each MLD to independently make access decisions to improve throughput while guaranteeing the fairness requirements of SLDs. Simulation results demonstrate that the MP-CUCB algorithm can: 1) better utilize the potential of MLO, achieving a 20% improvement compared to the standard CSMA scheme while ensuring fairness requirements for both MLDs and SLDs; 2) address the severe performance degradation issue in asymmetric heterogeneous scenarios, achieving a 33% improvement compared to the standard CSMA; 3) effectively adapt to dynamic networks with new accessing nodes, achieving short convergence times.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
期刊最新文献
Efficient Symbol Detection for Holographic MIMO Communications With Unitary Approximate Message Passing Variable-Rate Incremental-Redundancy HARQ for Finite Blocklengths The Role of Digital Twin in 6G-Based URLLCs: Current Contributions, Research Challenges, and Next Directions Trustworthy Reputation for Federated Learning in O-RAN Using Blockchain and Smart Contracts Efficient Spatial Channel Estimation in Extremely Large Antenna Array Communication Systems: A Subspace Approximated Matrix Completion Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1