Classic Theory of Aerosol Filtration for Application to Urban Green Infrastructure

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water, Air, & Soil Pollution Pub Date : 2025-02-27 DOI:10.1007/s11270-025-07829-y
Nathalie Tomson, Ruby N. Michael, Igor E. Agranovski
{"title":"Classic Theory of Aerosol Filtration for Application to Urban Green Infrastructure","authors":"Nathalie Tomson,&nbsp;Ruby N. Michael,&nbsp;Igor E. Agranovski","doi":"10.1007/s11270-025-07829-y","DOIUrl":null,"url":null,"abstract":"<div><p>The use of green infrastructure (GI) in urban environments has been widely investigated for its associated ecosystem services including air pollution mitigation. Plants are well-known for their ability of purifying air through photosynthesis and microbial activities occurring in the rhizosphere, however the simple filtration of particulate matter in air by plants is still not well understood. This study aimed to investigate the potential to adapt classic filtration theory for application in GI design. Two native Australian plants used as filter media were involved in laboratory experiments to remove aerosol particles ranging in size from 0.3 to &gt; 10 µm. A comparison of aerosol removal efficiencies obtained from the laboratory experiments and predicted through classic filtration theory showed good correlation for the smaller (needle-like) leaf system. In contrast, the correlation obtained for a plant with larger elliptical leaves was not as good, showing a larger difference between the results. Such outcomes led to the conclusion that smaller and spatially homogeneous plant systems have more predictable aerosol filtration characteristics, which can be reasonably calculated using filtration theory. This finding provides practical insight into GI design, allowing quantitative predictions of local air pollution reductions using green barriers.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11270-025-07829-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07829-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The use of green infrastructure (GI) in urban environments has been widely investigated for its associated ecosystem services including air pollution mitigation. Plants are well-known for their ability of purifying air through photosynthesis and microbial activities occurring in the rhizosphere, however the simple filtration of particulate matter in air by plants is still not well understood. This study aimed to investigate the potential to adapt classic filtration theory for application in GI design. Two native Australian plants used as filter media were involved in laboratory experiments to remove aerosol particles ranging in size from 0.3 to > 10 µm. A comparison of aerosol removal efficiencies obtained from the laboratory experiments and predicted through classic filtration theory showed good correlation for the smaller (needle-like) leaf system. In contrast, the correlation obtained for a plant with larger elliptical leaves was not as good, showing a larger difference between the results. Such outcomes led to the conclusion that smaller and spatially homogeneous plant systems have more predictable aerosol filtration characteristics, which can be reasonably calculated using filtration theory. This finding provides practical insight into GI design, allowing quantitative predictions of local air pollution reductions using green barriers.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
期刊最新文献
Classic Theory of Aerosol Filtration for Application to Urban Green Infrastructure A Comprehensive Overview of Chemical Additives in Single-Use Polimeric Products: Functionality, Environmental Impact and the Analytical Greenness Assessment Tracing the Fate of Metal Contamination in Groundwater and Its Health Risks: Insights from Madurai Block, Tamil Nadu, India First Assessment of Freshwater Monitoring Under the Eu National Emission Ceilings Directive: Emerging Issues and Way Forward Organic Pollutants and Potentially Toxic Elements in the Neretva Delta Sediments (Eastern Adriatic Basin, Croatia)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1