The use of green infrastructure (GI) in urban environments has been widely investigated for its associated ecosystem services including air pollution mitigation. Plants are well-known for their ability of purifying air through photosynthesis and microbial activities occurring in the rhizosphere, however the simple filtration of particulate matter in air by plants is still not well understood. This study aimed to investigate the potential to adapt classic filtration theory for application in GI design. Two native Australian plants used as filter media were involved in laboratory experiments to remove aerosol particles ranging in size from 0.3 to > 10 µm. A comparison of aerosol removal efficiencies obtained from the laboratory experiments and predicted through classic filtration theory showed good correlation for the smaller (needle-like) leaf system. In contrast, the correlation obtained for a plant with larger elliptical leaves was not as good, showing a larger difference between the results. Such outcomes led to the conclusion that smaller and spatially homogeneous plant systems have more predictable aerosol filtration characteristics, which can be reasonably calculated using filtration theory. This finding provides practical insight into GI design, allowing quantitative predictions of local air pollution reductions using green barriers.