Engineering a New Generation of Gene Editors: Integrating Synthetic Biology and AI Innovations.

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS ACS Synthetic Biology Pub Date : 2025-02-25 DOI:10.1021/acssynbio.4c00686
Bing Shao Chia, Yu Fen Samantha Seah, Bolun Wang, Kimberle Shen, Diya Srivastava, Wei Leong Chew
{"title":"Engineering a New Generation of Gene Editors: Integrating Synthetic Biology and AI Innovations.","authors":"Bing Shao Chia, Yu Fen Samantha Seah, Bolun Wang, Kimberle Shen, Diya Srivastava, Wei Leong Chew","doi":"10.1021/acssynbio.4c00686","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-Cas technology has revolutionized biology by enabling precise DNA and RNA edits with ease. However, significant challenges remain for translating this technology into clinical applications. Traditional protein engineering methods, such as rational design, mutagenesis screens, and directed evolution, have been used to address issues like low efficacy, specificity, and high immunogenicity. These methods are labor-intensive, time-consuming, and resource-intensive and often require detailed structural knowledge. Recently, computational strategies have emerged as powerful solutions to these limitations. Using artificial intelligence (AI) and machine learning (ML), the discovery and design of novel gene-editing enzymes can be streamlined. AI/ML models predict activity, specificity, and immunogenicity while also enhancing mutagenesis screens and directed evolution. These approaches not only accelerate rational design but also create new opportunities for developing safer and more efficient genome-editing tools, which could eventually be translated into the clinic.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00686","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR-Cas technology has revolutionized biology by enabling precise DNA and RNA edits with ease. However, significant challenges remain for translating this technology into clinical applications. Traditional protein engineering methods, such as rational design, mutagenesis screens, and directed evolution, have been used to address issues like low efficacy, specificity, and high immunogenicity. These methods are labor-intensive, time-consuming, and resource-intensive and often require detailed structural knowledge. Recently, computational strategies have emerged as powerful solutions to these limitations. Using artificial intelligence (AI) and machine learning (ML), the discovery and design of novel gene-editing enzymes can be streamlined. AI/ML models predict activity, specificity, and immunogenicity while also enhancing mutagenesis screens and directed evolution. These approaches not only accelerate rational design but also create new opportunities for developing safer and more efficient genome-editing tools, which could eventually be translated into the clinic.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
期刊最新文献
Engineering a New Generation of Gene Editors: Integrating Synthetic Biology and AI Innovations. Heterologous Expression of a Cryptic BGC from Bilophila sp. Provides Access to a Novel Family of Antibacterial Thiazoles. Cell-Free Multistep Gene Regulatory Cascades Using Eukaryotic ON-Riboswitches Responsive to in Situ Expressed Protein Ligands. CnRed: Efficient, Marker-free Genome Engineering of Cupriavidus necator H16 by Adapted Lambda Red Recombineering. Novel Reprogramming of Polyketide Synthase for Valerolactam Production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1