{"title":"Engineering a New Generation of Gene Editors: Integrating Synthetic Biology and AI Innovations.","authors":"Bing Shao Chia, Yu Fen Samantha Seah, Bolun Wang, Kimberle Shen, Diya Srivastava, Wei Leong Chew","doi":"10.1021/acssynbio.4c00686","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-Cas technology has revolutionized biology by enabling precise DNA and RNA edits with ease. However, significant challenges remain for translating this technology into clinical applications. Traditional protein engineering methods, such as rational design, mutagenesis screens, and directed evolution, have been used to address issues like low efficacy, specificity, and high immunogenicity. These methods are labor-intensive, time-consuming, and resource-intensive and often require detailed structural knowledge. Recently, computational strategies have emerged as powerful solutions to these limitations. Using artificial intelligence (AI) and machine learning (ML), the discovery and design of novel gene-editing enzymes can be streamlined. AI/ML models predict activity, specificity, and immunogenicity while also enhancing mutagenesis screens and directed evolution. These approaches not only accelerate rational design but also create new opportunities for developing safer and more efficient genome-editing tools, which could eventually be translated into the clinic.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00686","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR-Cas technology has revolutionized biology by enabling precise DNA and RNA edits with ease. However, significant challenges remain for translating this technology into clinical applications. Traditional protein engineering methods, such as rational design, mutagenesis screens, and directed evolution, have been used to address issues like low efficacy, specificity, and high immunogenicity. These methods are labor-intensive, time-consuming, and resource-intensive and often require detailed structural knowledge. Recently, computational strategies have emerged as powerful solutions to these limitations. Using artificial intelligence (AI) and machine learning (ML), the discovery and design of novel gene-editing enzymes can be streamlined. AI/ML models predict activity, specificity, and immunogenicity while also enhancing mutagenesis screens and directed evolution. These approaches not only accelerate rational design but also create new opportunities for developing safer and more efficient genome-editing tools, which could eventually be translated into the clinic.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.