A Distinct Mechanism of RNA Recognition by the Transcription Factor GATA1.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2025-03-18 Epub Date: 2025-02-25 DOI:10.1021/acs.biochem.4c00818
Daniella A Ugay, Robert T Batey, Deborah S Wuttke
{"title":"A Distinct Mechanism of RNA Recognition by the Transcription Factor GATA1.","authors":"Daniella A Ugay, Robert T Batey, Deborah S Wuttke","doi":"10.1021/acs.biochem.4c00818","DOIUrl":null,"url":null,"abstract":"<p><p>Several human transcription factors (TFs) have been reported to directly bind RNA through noncanonical RNA-binding domains; however, most of these TFs remain to be further validated as <i>bona fide</i> RNA-binding proteins (RBPs). Our systematic analysis of RBP discovery data sets reveals a varied set of candidate TF-RBPs that encompass most TF families. These candidate RBPs include members of the GATA family that are essential factors in embryonic development. Investigation of the RNA-binding features of GATA1, a major hematopoietic TF, reveals robust sequence independent binding to RNAs <i>in vitro</i>. Moreover, RNA binding by GATA1 is competitive with DNA binding, which occurs through a shared binding surface spanning the DNA-binding domain and arginine-rich motif (ARM)-like domain. We show that the ARM-like domain contributes substantially to high-affinity DNA binding and electrostatically to plastic RNA recognition, suggesting that the separable RNA-binding domain assigned to the ARM-domain in GATA1 is an oversimplification of a more complex recognition network. These biochemical data demonstrate a unified integration of DNA- and RNA-binding surfaces within GATA1, whereby the ARM-like domain provides an electrostatic surface for RNA binding but does not fully dominate GATA1-RNA interactions, which may also apply to other TF-RBPs. This competitive DNA/RNA binding activity using overlapping nucleic acid binding regions points to the possibility of RNA-mediated regulation of the GATA1 function during hematopoiesis. Our study highlights the multifunctionality of DNA-binding domains in RNA recognition and supports the need for robust characterization of predicted noncanonical RNA-binding domains such as ARM-like domains.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"1193-1198"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00818","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Several human transcription factors (TFs) have been reported to directly bind RNA through noncanonical RNA-binding domains; however, most of these TFs remain to be further validated as bona fide RNA-binding proteins (RBPs). Our systematic analysis of RBP discovery data sets reveals a varied set of candidate TF-RBPs that encompass most TF families. These candidate RBPs include members of the GATA family that are essential factors in embryonic development. Investigation of the RNA-binding features of GATA1, a major hematopoietic TF, reveals robust sequence independent binding to RNAs in vitro. Moreover, RNA binding by GATA1 is competitive with DNA binding, which occurs through a shared binding surface spanning the DNA-binding domain and arginine-rich motif (ARM)-like domain. We show that the ARM-like domain contributes substantially to high-affinity DNA binding and electrostatically to plastic RNA recognition, suggesting that the separable RNA-binding domain assigned to the ARM-domain in GATA1 is an oversimplification of a more complex recognition network. These biochemical data demonstrate a unified integration of DNA- and RNA-binding surfaces within GATA1, whereby the ARM-like domain provides an electrostatic surface for RNA binding but does not fully dominate GATA1-RNA interactions, which may also apply to other TF-RBPs. This competitive DNA/RNA binding activity using overlapping nucleic acid binding regions points to the possibility of RNA-mediated regulation of the GATA1 function during hematopoiesis. Our study highlights the multifunctionality of DNA-binding domains in RNA recognition and supports the need for robust characterization of predicted noncanonical RNA-binding domains such as ARM-like domains.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Charge, Hydrophobicity, and Lipid Type Drive Antimicrobial Peptides' Unique Perturbation Ensembles. Active Site Plasticity of the Bacterial Sliding Clamp. Issue Editorial Masthead Issue Publication Information Influence of Magnesium Ions and Crowding Agents on Structure and Stability of RNA Aptamers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1