{"title":"Benchmark of Coacervate Formation and Mechanism Exploration Using the Martini Force Field.","authors":"Rongrong Zou, Yiwei Wang, Xiu Zhang, Yeqiang Zhou, Yang Liu, Mingming Ding","doi":"10.1021/acs.jctc.4c01571","DOIUrl":null,"url":null,"abstract":"<p><p>Peptide-based coacervates are crucial for drug delivery due to their biocompatibility, versatility, high drug loading capacity, and cell penetration rates; however, their stability mechanism and phase behavior are not fully understood. Additionally, although Martini is one of the most famous force fields capable of describing coacervate formation with molecular details, a comprehensive benchmark of its accuracy has not been conducted. This research utilized the Martini 3.0 force field and machine learning algorithms to explore representative peptide-based coacervates, including those composed of polyaspartate (PAsp)/polyarginine (PArg), rmfp-1, sticker-and-spacer small molecules, and HBpep molecules. We identified key coacervate formation driving forces such as Coulomb, cation-π, and π-π interactions and established three criteria for determining coacervate formation in simulations. The results also indicate that while Martini 3.0 accurately captures coacervate formation trends, it tends to underestimate Coulomb interactions and overestimate π-π interactions. What is more, our study on drug encapsulation of HBpep and its derivative coacervates suggested that most loaded drugs were distributed on surfaces of HBpep clusters, awaiting experimental validation. This study employs simulation to enhance understanding of peptide-based coacervate phase behavior and stability mechanisms while also benchmarking Martini 3.0, thereby providing fundamental insights for future experimental and simulation investigations.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01571","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Peptide-based coacervates are crucial for drug delivery due to their biocompatibility, versatility, high drug loading capacity, and cell penetration rates; however, their stability mechanism and phase behavior are not fully understood. Additionally, although Martini is one of the most famous force fields capable of describing coacervate formation with molecular details, a comprehensive benchmark of its accuracy has not been conducted. This research utilized the Martini 3.0 force field and machine learning algorithms to explore representative peptide-based coacervates, including those composed of polyaspartate (PAsp)/polyarginine (PArg), rmfp-1, sticker-and-spacer small molecules, and HBpep molecules. We identified key coacervate formation driving forces such as Coulomb, cation-π, and π-π interactions and established three criteria for determining coacervate formation in simulations. The results also indicate that while Martini 3.0 accurately captures coacervate formation trends, it tends to underestimate Coulomb interactions and overestimate π-π interactions. What is more, our study on drug encapsulation of HBpep and its derivative coacervates suggested that most loaded drugs were distributed on surfaces of HBpep clusters, awaiting experimental validation. This study employs simulation to enhance understanding of peptide-based coacervate phase behavior and stability mechanisms while also benchmarking Martini 3.0, thereby providing fundamental insights for future experimental and simulation investigations.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.