Chao Wang, Lieqiong Kuang, Ze Tian, Xinfa Wang, Jinxing Tu, Hanzhong Wang, Xiaoling Dun
{"title":"Effect of Photoperiod on Ascorbic Acid Metabolism Regulation and Accumulation in Rapeseed (<i>Brassica napus</i> L.) Seedlings.","authors":"Chao Wang, Lieqiong Kuang, Ze Tian, Xinfa Wang, Jinxing Tu, Hanzhong Wang, Xiaoling Dun","doi":"10.3390/antiox14020160","DOIUrl":null,"url":null,"abstract":"<p><p>Ascorbic acid (AsA) is an important antioxidant for human health. The concept of \"oil-vegetable-duel-purpose\" can significantly enhance the economic benefits of the rapeseed industry. Rapeseed, when utilized as a vegetable, serves as a valuable food source of AsA. In this study, we integrated transcriptome and metabolome analyses, along with substrate feeding, to identify the L-galactose pathway as the primary source for AsA production, which is primarily regulated by light. Through seven different photoperiod treatments from 12 h/12 h (light/dark) to 24 h/0 h, we found that AsA content increased with longer photoperiods, as well as chlorophyll, carotenoids, and soluble sugars. However, an excessively long photoperiod led to photooxidative stress, which negatively affected biomass accumulation in rapeseed seedlings and subsequently impacted the total accumulation of AsA. Furthermore, different enzymes respond differently to different photoperiods. Analysis of the correlation between the expression levels of AsA biosynthesis-related genes and AsA content highlighted a dynamic balancing mechanism of AsA metabolism in response to different photoperiods. The study revealed that the 16 h/8 h photoperiod is optimal for long-term AsA accumulation in rapeseed seedlings. However, extending the photoperiod before harvest can enhance AsA content without compromising yield. These findings offer novel insights into an effective strategy for the biofortification of AsA in rapeseed.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851679/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14020160","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ascorbic acid (AsA) is an important antioxidant for human health. The concept of "oil-vegetable-duel-purpose" can significantly enhance the economic benefits of the rapeseed industry. Rapeseed, when utilized as a vegetable, serves as a valuable food source of AsA. In this study, we integrated transcriptome and metabolome analyses, along with substrate feeding, to identify the L-galactose pathway as the primary source for AsA production, which is primarily regulated by light. Through seven different photoperiod treatments from 12 h/12 h (light/dark) to 24 h/0 h, we found that AsA content increased with longer photoperiods, as well as chlorophyll, carotenoids, and soluble sugars. However, an excessively long photoperiod led to photooxidative stress, which negatively affected biomass accumulation in rapeseed seedlings and subsequently impacted the total accumulation of AsA. Furthermore, different enzymes respond differently to different photoperiods. Analysis of the correlation between the expression levels of AsA biosynthesis-related genes and AsA content highlighted a dynamic balancing mechanism of AsA metabolism in response to different photoperiods. The study revealed that the 16 h/8 h photoperiod is optimal for long-term AsA accumulation in rapeseed seedlings. However, extending the photoperiod before harvest can enhance AsA content without compromising yield. These findings offer novel insights into an effective strategy for the biofortification of AsA in rapeseed.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.