{"title":"Resveratrol Protects Photoreceptors in Mouse Models of Retinal Degeneration.","authors":"Shujuan Li, Hongwei Ma, Xi-Qin Ding","doi":"10.3390/antiox14020154","DOIUrl":null,"url":null,"abstract":"<p><p>Photoreceptor/retinal degeneration is the major cause of blindness. Induced and inherited mouse models of retinal degeneration are valuable tools for investigating disease mechanisms and developing therapeutic interventions. This study investigated the potential of the antioxidant resveratrol to relieve photoreceptor degeneration using mouse models. Clinical studies have shown a potential association between thyroid hormone (TH) signaling and age-related retinal degeneration. Excessive TH signaling induces oxidative stress/damage and photoreceptor death in mice. C57BL/6 (rod-dominant) and <i>Nrl<sup>-/-</sup></i> (cone-dominant) mice at postnatal day 30 (P30) received triiodothyronine (T3) via drinking water (20 µg/mL) with or without concomitant treatment with resveratrol via drinking water (120 µg/mL) for 30 days, followed by evaluation of photoreceptor degeneration, oxidative damage, and retinal stress responses. In experiments using Leber congenital amaurosis model mice, mother <i>Rpe65<sup>-/-</sup></i> and <i>Rpe65<sup>-/-</sup></i>/<i>Nrl<sup>-/-</sup></i> mice received resveratrol via drinking water (120 µg/mL) for 20 days and 10-13 days, respectively, beginning on the day when the pups were at P5, and pups were then evaluated for cone degeneration. Treatment with resveratrol significantly diminished the photoreceptor degeneration induced by T3 and preserved photoreceptors in <i>Rpe65</i>-deficient mice, manifested as preserved retinal morphology/outer nuclear layer thickness, increased cone density, reduced photoreceptor oxidative stress/damage and apoptosis, reduced upregulation of genes involved in cell death/inflammatory responses, and reduced macroglial cell activation. These findings demonstrate the role of oxidative stress in photoreceptor degeneration, associated with TH signaling and <i>Rpe65</i> deficiency, and support the therapeutic potential of resveratrol/antioxidants in the management of retinal degeneration.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851417/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14020154","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Photoreceptor/retinal degeneration is the major cause of blindness. Induced and inherited mouse models of retinal degeneration are valuable tools for investigating disease mechanisms and developing therapeutic interventions. This study investigated the potential of the antioxidant resveratrol to relieve photoreceptor degeneration using mouse models. Clinical studies have shown a potential association between thyroid hormone (TH) signaling and age-related retinal degeneration. Excessive TH signaling induces oxidative stress/damage and photoreceptor death in mice. C57BL/6 (rod-dominant) and Nrl-/- (cone-dominant) mice at postnatal day 30 (P30) received triiodothyronine (T3) via drinking water (20 µg/mL) with or without concomitant treatment with resveratrol via drinking water (120 µg/mL) for 30 days, followed by evaluation of photoreceptor degeneration, oxidative damage, and retinal stress responses. In experiments using Leber congenital amaurosis model mice, mother Rpe65-/- and Rpe65-/-/Nrl-/- mice received resveratrol via drinking water (120 µg/mL) for 20 days and 10-13 days, respectively, beginning on the day when the pups were at P5, and pups were then evaluated for cone degeneration. Treatment with resveratrol significantly diminished the photoreceptor degeneration induced by T3 and preserved photoreceptors in Rpe65-deficient mice, manifested as preserved retinal morphology/outer nuclear layer thickness, increased cone density, reduced photoreceptor oxidative stress/damage and apoptosis, reduced upregulation of genes involved in cell death/inflammatory responses, and reduced macroglial cell activation. These findings demonstrate the role of oxidative stress in photoreceptor degeneration, associated with TH signaling and Rpe65 deficiency, and support the therapeutic potential of resveratrol/antioxidants in the management of retinal degeneration.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.