Strawberry and Drupe Fruit Wines Antioxidant Activity and Protective Effect Against Induced Oxidative Stress in Rat Synaptosomes.

IF 6.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Antioxidants Pub Date : 2025-01-28 DOI:10.3390/antiox14020155
Uroš Čakar, Mirjana Čolović, Danijela Milenković, Maja Pagnacco, Jelena Maksimović, Danijela Krstić, Brižita Đorđević
{"title":"Strawberry and Drupe Fruit Wines Antioxidant Activity and Protective Effect Against Induced Oxidative Stress in Rat Synaptosomes.","authors":"Uroš Čakar, Mirjana Čolović, Danijela Milenković, Maja Pagnacco, Jelena Maksimović, Danijela Krstić, Brižita Đorđević","doi":"10.3390/antiox14020155","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to investigate the antioxidant capacity of fruit wines and their protective effects against hydrogen peroxide-induced oxidative stress in rat synaptosomes in vitro. The wines were produced from strawberries and drupe fruits (i.e., plum, sweet cherry, peach, and apricot) through microvinification with a pure <i>S. cerevisiae</i> yeast culture. Fruit wines were produced with and without added sugar before the start of fermentation, whereas subvariants with and without pits were only applied to drupe fruit wines. First, synaptosomes were treated with the wines, while oxidative stress was induced with H<sub>2</sub>O<sub>2</sub>. Subsequently, the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)) and the content of malondialdehyde (MDA), an indicator of membrane injury, were determined. In addition, the Briggs-Rauscher reaction (BR) was used to evaluate the inhibition capacity against free radicals. All investigated fruit wines increased the activity of the studied antioxidant enzymes and decreased MDA content compared to the corresponding controls (synaptosomes treated with H<sub>2</sub>O<sub>2</sub>). After synaptosomal treatment with plum wine, the highest activities were observed for SOD (5.57 U/mg protein) and GPx (0.015 U/mg protein). Strawberry wine induced the highest CAT activity (0.047 U/mg protein) and showed the best ability to reduce lipid peroxidation, yielding the lowest MDA level (2.68 nmol/mg). Strawberry, plum, and sweet cherry wines were identified as samples with higher antioxidant activity in both principal component analysis (PCA) and hierarchical cluster analysis (HCA). Finally, plum wine exhibited the highest inhibitory activity in the BR reaction (397 s). The results suggest that fruit wines could be considered potential functional food due to their protective effects against oxidative stress.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851380/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14020155","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to investigate the antioxidant capacity of fruit wines and their protective effects against hydrogen peroxide-induced oxidative stress in rat synaptosomes in vitro. The wines were produced from strawberries and drupe fruits (i.e., plum, sweet cherry, peach, and apricot) through microvinification with a pure S. cerevisiae yeast culture. Fruit wines were produced with and without added sugar before the start of fermentation, whereas subvariants with and without pits were only applied to drupe fruit wines. First, synaptosomes were treated with the wines, while oxidative stress was induced with H2O2. Subsequently, the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)) and the content of malondialdehyde (MDA), an indicator of membrane injury, were determined. In addition, the Briggs-Rauscher reaction (BR) was used to evaluate the inhibition capacity against free radicals. All investigated fruit wines increased the activity of the studied antioxidant enzymes and decreased MDA content compared to the corresponding controls (synaptosomes treated with H2O2). After synaptosomal treatment with plum wine, the highest activities were observed for SOD (5.57 U/mg protein) and GPx (0.015 U/mg protein). Strawberry wine induced the highest CAT activity (0.047 U/mg protein) and showed the best ability to reduce lipid peroxidation, yielding the lowest MDA level (2.68 nmol/mg). Strawberry, plum, and sweet cherry wines were identified as samples with higher antioxidant activity in both principal component analysis (PCA) and hierarchical cluster analysis (HCA). Finally, plum wine exhibited the highest inhibitory activity in the BR reaction (397 s). The results suggest that fruit wines could be considered potential functional food due to their protective effects against oxidative stress.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
草莓和核果果酒对大鼠突触体氧化应激的抗氧化活性及保护作用。
本研究旨在探讨果酒对大鼠突触体过氧化氢氧化应激的抗氧化能力及其对过氧化氢氧化应激的保护作用。这些葡萄酒是用草莓和核果类水果(即李子、甜樱桃、桃子和杏)通过纯酿酒酵母培养的微酿造而成的。在发酵开始前,果酒有和没有添加糖,而有和没有核的亚变种只适用于核果果酒。首先,用葡萄酒处理突触体,同时用H2O2诱导氧化应激。随后测定抗氧化酶(超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPx))活性及膜损伤指标丙二醛(MDA)含量。此外,采用Briggs-Rauscher反应(BR)评价了其对自由基的抑制能力。与对照组(用H2O2处理的突触体)相比,所有被研究的果酒都增加了所研究的抗氧化酶的活性,降低了MDA含量。经梅酒处理后,突触体SOD (5.57 U/mg蛋白)和GPx (0.015 U/mg蛋白)活性最高。草莓酒诱导的CAT活性最高(0.047 U/mg),降低脂质过氧化的能力最好,MDA含量最低(2.68 nmol/mg)。主成分分析(PCA)和层次聚类分析(HCA)均发现草莓、李子和甜樱桃酒具有较高的抗氧化活性。结果表明,果酒对氧化应激反应的抑制活性最高(397 s),可作为潜在的功能性食品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Role of Glutathione in Alleviating Chilling Injury in Bovine Blastocysts: Mitochondrial Restoration and Apoptosis Inhibition. Integrative Transcriptomic and Network Analysis of Hemocyte Volume Plasticity and Redox Regulation Under Osmotic Stress in Penaeus monodon. Metal-Chelating Macroalgal Extract as a Marine Antioxidant for Stabilizing DHA Nanoemulsions. The Mechanism of Oxidative Stress in Pulmonary Fibrosis and Research Progress. European Teas (Camellia sinensis) as a New Frontier in the Specialty Tea Market: Characterizing the Antioxidant, Polyphenolic, and Sensory Profiles Through a Systematic, Comparative Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1