Ranyang Liu, Lei Gao, Xueshu Zhang, Pingan Ge, Ling Wang, Keli Zhou, Chuanyan Yang, Lingling Wang, Linsheng Song
{"title":"The Regulation of γ-Aminobutyric Acid on Antioxidative Defense Response of Pacific Oyster upon High-Temperature Stress.","authors":"Ranyang Liu, Lei Gao, Xueshu Zhang, Pingan Ge, Ling Wang, Keli Zhou, Chuanyan Yang, Lingling Wang, Linsheng Song","doi":"10.3390/antiox14020222","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have found that high temperatures cause oxidative stress and even mass mortality in Pacific oysters (<i>Crassostrea gigas</i>). The role of γ-aminobutyric acid (GABA) in improving antioxidative defense in aquatic animals is increasingly of interest. In the present study, the oxidative stress of Pacific oysters to high-temperature stress was examined, and the regulation of GABA on the antioxidative defense was further investigated. Following 6 h of exposure to 28 °C seawater, a significant increase in the mRNA expression levels of nuclear factor-E2-related factor 2 (Nrf2), superoxide dismutase (SOD), and catalase (CAT), as well as the activities of SOD and CAT, was observed in the gill, compared to those at 0 h. An increase of glutamate decarboxylase (GAD), GABA receptor (GABA<sub>A</sub>R-α and GABA<sub>B</sub>R-B) mRNA levels, and GABA contents were also detected after 28 °C exposure compared to those at 0 h. Furthermore, the activities and mRNA expression levels of SOD and CAT were significantly upregulated after GABA treatment, while decreased after either GAD inhibitor or GABA receptor inhibitor treatment under high-temperature stress. Meanwhile, the enhanced effects of GABA on antioxidant enzyme activities were reduced when Nrf2 was inhibited by ML385, accompanied by an increase in MDA content. After high-temperature stress, compared with the GABA treatment group, the activities and mRNA expression levels of SOD and CAT were significantly upregulated by GSK-3β inhibitor treatment. Meanwhile, the elevation of antioxidant enzyme activities by GABA was attenuated by the AKT inhibitor treatment. Collectively, GABA first activated GABA receptors under high-temperature stress and then increased the activities of SOD and CAT and reduced MDA content by AKT/GSK-3β and Nrf2 pathways to protect the oysters against oxidative damage upon stress. The present results offer new insights for understanding the regulation mechanisms of antioxidative defense by the neuroendocrine system in molluscs.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852102/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14020222","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies have found that high temperatures cause oxidative stress and even mass mortality in Pacific oysters (Crassostrea gigas). The role of γ-aminobutyric acid (GABA) in improving antioxidative defense in aquatic animals is increasingly of interest. In the present study, the oxidative stress of Pacific oysters to high-temperature stress was examined, and the regulation of GABA on the antioxidative defense was further investigated. Following 6 h of exposure to 28 °C seawater, a significant increase in the mRNA expression levels of nuclear factor-E2-related factor 2 (Nrf2), superoxide dismutase (SOD), and catalase (CAT), as well as the activities of SOD and CAT, was observed in the gill, compared to those at 0 h. An increase of glutamate decarboxylase (GAD), GABA receptor (GABAAR-α and GABABR-B) mRNA levels, and GABA contents were also detected after 28 °C exposure compared to those at 0 h. Furthermore, the activities and mRNA expression levels of SOD and CAT were significantly upregulated after GABA treatment, while decreased after either GAD inhibitor or GABA receptor inhibitor treatment under high-temperature stress. Meanwhile, the enhanced effects of GABA on antioxidant enzyme activities were reduced when Nrf2 was inhibited by ML385, accompanied by an increase in MDA content. After high-temperature stress, compared with the GABA treatment group, the activities and mRNA expression levels of SOD and CAT were significantly upregulated by GSK-3β inhibitor treatment. Meanwhile, the elevation of antioxidant enzyme activities by GABA was attenuated by the AKT inhibitor treatment. Collectively, GABA first activated GABA receptors under high-temperature stress and then increased the activities of SOD and CAT and reduced MDA content by AKT/GSK-3β and Nrf2 pathways to protect the oysters against oxidative damage upon stress. The present results offer new insights for understanding the regulation mechanisms of antioxidative defense by the neuroendocrine system in molluscs.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.