Taylor Smith, Minh Chau, Jordan Sims, Elio Arruzza
{"title":"23Na-MRI for Breast Cancer Diagnosis and Treatment Monitoring: A Scoping Review.","authors":"Taylor Smith, Minh Chau, Jordan Sims, Elio Arruzza","doi":"10.3390/bioengineering12020158","DOIUrl":null,"url":null,"abstract":"<p><p>(1) Background: Variations in intracellular and extracellular sodium levels have been hypothesized to serve as biomarkers for tumour characterization and therapeutic response. While previous research has explored the feasibility of 23Na-MRI, a comprehensive review of its clinical utility in breast cancer is lacking. This scoping review aims to synthesize existing literature on the potential role of 23Na-MRI in breast cancer diagnosis and treatment monitoring. (2) Methods: This review included English-language studies reporting on quantitative applications of 23Na-MRI in breast cancer. Systematic searches were conducted across PubMed, Emcare, Embase, Scopus, Google Scholar, Cochrane Library, and Medline. (3) Results: Seven primary studies met the inclusion criteria, highlighting the ability of 23Na-MRI to differentiate between malignant and benign breast lesions based on elevated total sodium concentration (TSC) in tumour tissues. 23Na-MRI also showed potential in early prediction of treatment response, with significant reductions in TSC observed in responders. However, the studies varied widely in their protocols, use of phantoms, field strengths, and contrast agent application, limiting inter-study comparability. (4) Conclusion: 23Na-MRI holds promise as a complementary imaging modality for breast cancer diagnosis and treatment monitoring. However, standardization of imaging protocols and technical optimization are essential before it can be translated into clinical practice.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851933/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020158","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
(1) Background: Variations in intracellular and extracellular sodium levels have been hypothesized to serve as biomarkers for tumour characterization and therapeutic response. While previous research has explored the feasibility of 23Na-MRI, a comprehensive review of its clinical utility in breast cancer is lacking. This scoping review aims to synthesize existing literature on the potential role of 23Na-MRI in breast cancer diagnosis and treatment monitoring. (2) Methods: This review included English-language studies reporting on quantitative applications of 23Na-MRI in breast cancer. Systematic searches were conducted across PubMed, Emcare, Embase, Scopus, Google Scholar, Cochrane Library, and Medline. (3) Results: Seven primary studies met the inclusion criteria, highlighting the ability of 23Na-MRI to differentiate between malignant and benign breast lesions based on elevated total sodium concentration (TSC) in tumour tissues. 23Na-MRI also showed potential in early prediction of treatment response, with significant reductions in TSC observed in responders. However, the studies varied widely in their protocols, use of phantoms, field strengths, and contrast agent application, limiting inter-study comparability. (4) Conclusion: 23Na-MRI holds promise as a complementary imaging modality for breast cancer diagnosis and treatment monitoring. However, standardization of imaging protocols and technical optimization are essential before it can be translated into clinical practice.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering