{"title":"A High-Resolution Digital Pathological Image Staining Style Transfer Model Based on Gradient Guidance.","authors":"Yutao Tang, Yuanpin Zhou, Siyu Zhang, Yao Lu","doi":"10.3390/bioengineering12020187","DOIUrl":null,"url":null,"abstract":"<p><p>Digital pathology images have long been regarded as the gold standard for cancer diagnosis in clinical medicine. A highly generalized digital pathological image diagnosis system can provide strong support for cancer diagnosis, help to improve the diagnostic efficiency and accuracy of doctors, and has important research value. The whole slide image of different centers can lead to very large staining differences due to different scanners and dyes, which pose a challenge to the generalization performance of the model application in multi-center data testing. In order to achieve the normalization of multi-center data, this paper proposes a style transfer algorithm based on an adversarial generative network for high-resolution images. The gradient-guided dye migration model proposed in this paper introduces a gradient-enhanced regularized term in the loss function design of the algorithm. A style transfer algorithm was applied to the source data, and the diagnostic performance of the multi-example learning model based on the domain data was significantly improved by validation in the pathological image datasets of two centers. The proposed method improved the AUC of the best classification model from 0.8856 to 0.9243, and another set of experiments improved the AUC from 0.8012 to 0.8313.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851416/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020187","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Digital pathology images have long been regarded as the gold standard for cancer diagnosis in clinical medicine. A highly generalized digital pathological image diagnosis system can provide strong support for cancer diagnosis, help to improve the diagnostic efficiency and accuracy of doctors, and has important research value. The whole slide image of different centers can lead to very large staining differences due to different scanners and dyes, which pose a challenge to the generalization performance of the model application in multi-center data testing. In order to achieve the normalization of multi-center data, this paper proposes a style transfer algorithm based on an adversarial generative network for high-resolution images. The gradient-guided dye migration model proposed in this paper introduces a gradient-enhanced regularized term in the loss function design of the algorithm. A style transfer algorithm was applied to the source data, and the diagnostic performance of the multi-example learning model based on the domain data was significantly improved by validation in the pathological image datasets of two centers. The proposed method improved the AUC of the best classification model from 0.8856 to 0.9243, and another set of experiments improved the AUC from 0.8012 to 0.8313.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering