Deep Learning-Enhanced Portable Chemiluminescence Biosensor: 3D-Printed, Smartphone-Integrated Platform for Glucose Detection.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2025-01-27 DOI:10.3390/bioengineering12020119
Chirag M Singhal, Vani Kaushik, Abhijeet Awasthi, Jitendra B Zalke, Sangeeta Palekar, Prakash Rewatkar, Sanjeet Kumar Srivastava, Madhusudan B Kulkarni, Manish L Bhaiyya
{"title":"Deep Learning-Enhanced Portable Chemiluminescence Biosensor: 3D-Printed, Smartphone-Integrated Platform for Glucose Detection.","authors":"Chirag M Singhal, Vani Kaushik, Abhijeet Awasthi, Jitendra B Zalke, Sangeeta Palekar, Prakash Rewatkar, Sanjeet Kumar Srivastava, Madhusudan B Kulkarni, Manish L Bhaiyya","doi":"10.3390/bioengineering12020119","DOIUrl":null,"url":null,"abstract":"<p><p>A novel, portable chemiluminescence (CL) sensing platform powered by deep learning and smartphone integration has been developed for cost-effective and selective glucose detection. This platform features low-cost, wax-printed micro-pads (WPµ-pads) on paper-based substrates used to construct a miniaturized CL sensor. A 3D-printed black box serves as a compact WPµ-pad sensing chamber, replacing traditional bulky equipment, such as charge coupled device (CCD) cameras and optical sensors. Smartphone integration enables a seamless and user-friendly diagnostic experience, making this platform highly suitable for point-of-care (PoC) applications. Deep learning models significantly enhance the platform's performance, offering superior accuracy and efficiency in CL image analysis. A dataset of 600 experimental CL images was utilized, out of which 80% were used for model training, with 20% of the images reserved for testing. Comparative analysis was conducted using multiple deep learning models, including Random Forest, the Support Vector Machine (SVM), InceptionV3, VGG16, and ResNet-50, to identify the optimal architecture for accurate glucose detection. The CL sensor demonstrates a linear detection range of 10-1000 µM, with a low detection limit of 8.68 µM. Extensive evaluations confirmed its stability, repeatability, and reliability under real-world conditions. This deep learning-powered platform not only improves the accuracy of analyte detection, but also democratizes access to advanced diagnostics through cost-effective and portable technology. This work paves the way for next-generation biosensing, offering transformative potential in healthcare and other domains requiring rapid and reliable analyte detection.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020119","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel, portable chemiluminescence (CL) sensing platform powered by deep learning and smartphone integration has been developed for cost-effective and selective glucose detection. This platform features low-cost, wax-printed micro-pads (WPµ-pads) on paper-based substrates used to construct a miniaturized CL sensor. A 3D-printed black box serves as a compact WPµ-pad sensing chamber, replacing traditional bulky equipment, such as charge coupled device (CCD) cameras and optical sensors. Smartphone integration enables a seamless and user-friendly diagnostic experience, making this platform highly suitable for point-of-care (PoC) applications. Deep learning models significantly enhance the platform's performance, offering superior accuracy and efficiency in CL image analysis. A dataset of 600 experimental CL images was utilized, out of which 80% were used for model training, with 20% of the images reserved for testing. Comparative analysis was conducted using multiple deep learning models, including Random Forest, the Support Vector Machine (SVM), InceptionV3, VGG16, and ResNet-50, to identify the optimal architecture for accurate glucose detection. The CL sensor demonstrates a linear detection range of 10-1000 µM, with a low detection limit of 8.68 µM. Extensive evaluations confirmed its stability, repeatability, and reliability under real-world conditions. This deep learning-powered platform not only improves the accuracy of analyte detection, but also democratizes access to advanced diagnostics through cost-effective and portable technology. This work paves the way for next-generation biosensing, offering transformative potential in healthcare and other domains requiring rapid and reliable analyte detection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习增强型便携式化学发光生物传感器:用于葡萄糖检测的 3D 打印、智能手机集成平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
Inflammatory Cell-Targeted Delivery Systems for Myocardial Infarction Treatment. Biomedical Applications of Big Data and Artificial Intelligence. An Innovative Coded Language for Transferring Data via a Haptic Thermal Interface. Development of Mathematical Model for Understanding Microcirculation in Diabetic Foot Ulcers Based on Ankle-Brachial Index. Different Oral Appliance Designs Demonstrate Different Rates of Efficacy for the Treatment of Obstructive Sleep Apnea: A Review Article.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1