{"title":"A Robust Method for Real Time Intraoperative 2D and Preoperative 3D X-Ray Image Registration Based on an Enhanced Swin Transformer Framework.","authors":"Wentao Ye, Jianghong Wu, Wei Zhang, Liyang Sun, Xue Dong, Shuogui Xu","doi":"10.3390/bioengineering12020114","DOIUrl":null,"url":null,"abstract":"<p><p>In image-guided surgery (IGS) practice, combining intraoperative 2D X-ray images with preoperative 3D X-ray images from computed tomography (CT) enables the rapid and accurate localization of lesions, which allows for a more minimally invasive and efficient surgery, and also reduces the risk of secondary injuries to nerves and vessels. Conventional optimization-based methods for 2D X-ray and 3D CT matching are limited in speed and precision due to non-convex optimization spaces and a constrained searching range. Recently, deep learning (DL) approaches have demonstrated remarkable proficiency in solving complex nonlinear 2D-3D registration. In this paper, a fast and robust DL-based registration method is proposed that takes an intraoperative 2D X-ray image as input, compares it with the preoperative 3D CT, and outputs their relative pose in x, y, z and pitch, yaw, roll. The method employs a dual-channel Swin transformer feature extractor equipped with attention mechanisms and feature pyramid to facilitate the correlation between features of the 2D X-ray and anatomical pose of CT. Tests on three different regions of interest acquired from open-source datasets show that our method can achieve high pose estimation accuracy (mean rotation and translation error of 0.142° and 0.362 mm, respectively) in a short time (0.02 s). Robustness tests indicate that our proposed method can maintain zero registration failures across varying levels of noise. This generalizable learning-based 2D (X-ray) and 3D (CT) registration algorithm owns promising applications in surgical navigation, targeted radiotherapy, and other clinical operations, with substantial potential for enhancing the accuracy and efficiency of image-guided surgery.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851897/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020114","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In image-guided surgery (IGS) practice, combining intraoperative 2D X-ray images with preoperative 3D X-ray images from computed tomography (CT) enables the rapid and accurate localization of lesions, which allows for a more minimally invasive and efficient surgery, and also reduces the risk of secondary injuries to nerves and vessels. Conventional optimization-based methods for 2D X-ray and 3D CT matching are limited in speed and precision due to non-convex optimization spaces and a constrained searching range. Recently, deep learning (DL) approaches have demonstrated remarkable proficiency in solving complex nonlinear 2D-3D registration. In this paper, a fast and robust DL-based registration method is proposed that takes an intraoperative 2D X-ray image as input, compares it with the preoperative 3D CT, and outputs their relative pose in x, y, z and pitch, yaw, roll. The method employs a dual-channel Swin transformer feature extractor equipped with attention mechanisms and feature pyramid to facilitate the correlation between features of the 2D X-ray and anatomical pose of CT. Tests on three different regions of interest acquired from open-source datasets show that our method can achieve high pose estimation accuracy (mean rotation and translation error of 0.142° and 0.362 mm, respectively) in a short time (0.02 s). Robustness tests indicate that our proposed method can maintain zero registration failures across varying levels of noise. This generalizable learning-based 2D (X-ray) and 3D (CT) registration algorithm owns promising applications in surgical navigation, targeted radiotherapy, and other clinical operations, with substantial potential for enhancing the accuracy and efficiency of image-guided surgery.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering