{"title":"Geometric Self-Supervised Learning: A Novel AI Approach Towards Quantitative and Explainable Diabetic Retinopathy Detection.","authors":"Lucas Pu, Oliver Beale, Xin Meng","doi":"10.3390/bioengineering12020157","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic retinopathy (DR) is the leading cause of blindness among working-age adults. Early detection is crucial to reducing DR-related vision loss risk but is fraught with challenges. Manual detection is labor-intensive and often misses tiny DR lesions, necessitating automated detection.</p><p><strong>Objective: </strong>We aimed to develop and validate an annotation-free deep learning strategy for the automatic detection of exudates and bleeding spots on color fundus photography (CFP) images and ultrawide field (UWF) retinal images.</p><p><strong>Materials and methods: </strong>Three cohorts were created: two CFP cohorts (Kaggle-CFP and E-Ophtha) and one UWF cohort. Kaggle-CFP was used for algorithm development, while E-Ophtha, with manually annotated DR-related lesions, served as the independent test set. For additional independent testing, 50 DR-positive cases from both the Kaggle-CFP and UWF cohorts were manually outlined for bleeding and exudate spots. The remaining cases were used for algorithm training. A multiscale contrast-based shape descriptor transformed DR-verified retinal images into contrast fields. High-contrast regions were identified, and local image patches from abnormal and normal areas were extracted to train a U-Net model. Model performance was evaluated using sensitivity and false positive rates based on manual annotations in the independent test sets.</p><p><strong>Results: </strong>Our trained model on the independent CFP cohort achieved high sensitivities for detecting and segmenting DR lesions: microaneurysms (91.5%, 9.04 false positives per image), hemorrhages (92.6%, 2.26 false positives per image), hard exudates (92.3%, 7.72 false positives per image), and soft exudates (90.7%, 0.18 false positives per image). For UWF images, the model's performance varied by lesion size. Bleeding detection sensitivity increased with lesion size, from 41.9% (6.48 false positives per image) for the smallest spots to 93.4% (5.80 false positives per image) for the largest. Exudate detection showed high sensitivity across all sizes, ranging from 86.9% (24.94 false positives per image) to 96.2% (6.40 false positives per image), though false positive rates were higher for smaller lesions.</p><p><strong>Conclusions: </strong>Our experiments demonstrate the feasibility of training a deep learning neural network for detecting and segmenting DR-related lesions without relying on their manual annotations.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852169/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020157","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diabetic retinopathy (DR) is the leading cause of blindness among working-age adults. Early detection is crucial to reducing DR-related vision loss risk but is fraught with challenges. Manual detection is labor-intensive and often misses tiny DR lesions, necessitating automated detection.
Objective: We aimed to develop and validate an annotation-free deep learning strategy for the automatic detection of exudates and bleeding spots on color fundus photography (CFP) images and ultrawide field (UWF) retinal images.
Materials and methods: Three cohorts were created: two CFP cohorts (Kaggle-CFP and E-Ophtha) and one UWF cohort. Kaggle-CFP was used for algorithm development, while E-Ophtha, with manually annotated DR-related lesions, served as the independent test set. For additional independent testing, 50 DR-positive cases from both the Kaggle-CFP and UWF cohorts were manually outlined for bleeding and exudate spots. The remaining cases were used for algorithm training. A multiscale contrast-based shape descriptor transformed DR-verified retinal images into contrast fields. High-contrast regions were identified, and local image patches from abnormal and normal areas were extracted to train a U-Net model. Model performance was evaluated using sensitivity and false positive rates based on manual annotations in the independent test sets.
Results: Our trained model on the independent CFP cohort achieved high sensitivities for detecting and segmenting DR lesions: microaneurysms (91.5%, 9.04 false positives per image), hemorrhages (92.6%, 2.26 false positives per image), hard exudates (92.3%, 7.72 false positives per image), and soft exudates (90.7%, 0.18 false positives per image). For UWF images, the model's performance varied by lesion size. Bleeding detection sensitivity increased with lesion size, from 41.9% (6.48 false positives per image) for the smallest spots to 93.4% (5.80 false positives per image) for the largest. Exudate detection showed high sensitivity across all sizes, ranging from 86.9% (24.94 false positives per image) to 96.2% (6.40 false positives per image), though false positive rates were higher for smaller lesions.
Conclusions: Our experiments demonstrate the feasibility of training a deep learning neural network for detecting and segmenting DR-related lesions without relying on their manual annotations.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering