Edward Bowen, Aboubacar Waque, Favian Su, Michael Davies, Gabriella Ode, Drew Lansdown, Brian Feeley, Asheesh Bedi
{"title":"Muscle Health & Fatty Infiltration with Advanced Rotator Cuff Pathology.","authors":"Edward Bowen, Aboubacar Waque, Favian Su, Michael Davies, Gabriella Ode, Drew Lansdown, Brian Feeley, Asheesh Bedi","doi":"10.1007/s12178-025-09955-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Fatty infiltration (FI) of the rotator cuff is a critical determinant of clinical outcomes following rotator cuff injuries and repairs. This review examines the natural history, pathophysiology, imaging evaluation, and treatment strategies for FI, highlighting recent insights into its cellular mechanisms and emerging therapeutic approaches.</p><p><strong>Recent findings: </strong>Animal models demonstrate that FI begins shortly after tendon injury, progresses with muscle retraction and denervation, and is largely irreversible despite repair. Key cellular drivers include fibroadipogenic progenitor cells (FAPs), influenced by mechanical loading and inflammatory signaling pathways. Clinical studies show that FI is associated with advanced age, female sex, and full-thickness tears. Higher degrees of preoperative FI correlate with poorer functional outcomes and increased re-tear rates. Novel therapeutic targets, including pathways regulating FAP activity, TGF-β, and cell-based therapies, show promise in preclinical studies. Emerging strategies such as leukocyte-poor platelet-rich plasma (PRP) may mitigate FI progression in clinical settings. Fatty infiltration remains a significant barrier to successful rotator cuff repair and functional recovery. While surgical repair may slow FI progression, it is not consistently effective in reversing established muscle degeneration. Improved understanding of the molecular mechanisms driving FI has identified potential therapeutic targets, but their clinical applicability requires further validation. Future advances in regenerative medicine, including cell-based therapies and modulation of fibroadipogenic progenitors, offer hope for mitigating FI and improving long-term outcomes.</p>","PeriodicalId":10950,"journal":{"name":"Current Reviews in Musculoskeletal Medicine","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Reviews in Musculoskeletal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12178-025-09955-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: Fatty infiltration (FI) of the rotator cuff is a critical determinant of clinical outcomes following rotator cuff injuries and repairs. This review examines the natural history, pathophysiology, imaging evaluation, and treatment strategies for FI, highlighting recent insights into its cellular mechanisms and emerging therapeutic approaches.
Recent findings: Animal models demonstrate that FI begins shortly after tendon injury, progresses with muscle retraction and denervation, and is largely irreversible despite repair. Key cellular drivers include fibroadipogenic progenitor cells (FAPs), influenced by mechanical loading and inflammatory signaling pathways. Clinical studies show that FI is associated with advanced age, female sex, and full-thickness tears. Higher degrees of preoperative FI correlate with poorer functional outcomes and increased re-tear rates. Novel therapeutic targets, including pathways regulating FAP activity, TGF-β, and cell-based therapies, show promise in preclinical studies. Emerging strategies such as leukocyte-poor platelet-rich plasma (PRP) may mitigate FI progression in clinical settings. Fatty infiltration remains a significant barrier to successful rotator cuff repair and functional recovery. While surgical repair may slow FI progression, it is not consistently effective in reversing established muscle degeneration. Improved understanding of the molecular mechanisms driving FI has identified potential therapeutic targets, but their clinical applicability requires further validation. Future advances in regenerative medicine, including cell-based therapies and modulation of fibroadipogenic progenitors, offer hope for mitigating FI and improving long-term outcomes.
期刊介绍:
This journal intends to review the most significant recent developments in the field of musculoskeletal medicine. By providing clear, insightful, balanced contributions by expert world-renowned authors, the journal aims to serve all those involved in the diagnosis, treatment, management, and prevention of musculoskeletal-related conditions.
We accomplish this aim by appointing authorities to serve as Section Editors in key subject areas, such as rehabilitation of the knee and hip, sports medicine, trauma, pediatrics, health policy, customization in arthroplasty, and rheumatology. Section Editors, in turn, select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. We also provide commentaries from well-known figures in the field, and an Editorial Board of more than 20 diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research.