Impact of Species and Developmental Stage on the Bacterial Communities of Aphaenogaster Ants.

IF 2.3 3区 生物学 Q3 MICROBIOLOGY Current Microbiology Pub Date : 2025-02-26 DOI:10.1007/s00284-025-04128-x
Lily A Kelleher, Manuela O Ramalho
{"title":"Impact of Species and Developmental Stage on the Bacterial Communities of Aphaenogaster Ants.","authors":"Lily A Kelleher, Manuela O Ramalho","doi":"10.1007/s00284-025-04128-x","DOIUrl":null,"url":null,"abstract":"<p><p>Ants are distributed across the globe and there are currently over 14,000 described species. Due to the high diversity between species, ants are considered vital keystone species to many ecosystems. They provide basic ecosystem services such as: seed dispersal, soil bioturbation, decomposition, and pest control. Within these ecosystems ants form complex symbiotic relationships with plants, fungi, and bacteria. Studying the interaction between ants and their bacteria is important because of the crucial role that microbes play in the overall health of ants. Aphaenogaster Mayr, 1853, which is a globally distributed ant genus, remains understudied in terms of their bacterial community. This study aims to determine the taxonomic composition and abundance of the Aphaenogaster bacterial community and to determine if development stage and species impact the bacterial community composition. For this study, ants from several colonies were collected from the Gordon Natural Area in West Chester, Pennsylvania, USA. DNA was then extracted from the ants in all stages of development and the 16S rRNA gene was amplified and sequencing following the NGS amplicon approach. The findings from this study reveal that species and development stage have a significant impact upon the bacterial community composition and abundance of Aphaenogaster ants, and Wolbachia is highly associated with these ants.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 4","pages":"157"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-025-04128-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ants are distributed across the globe and there are currently over 14,000 described species. Due to the high diversity between species, ants are considered vital keystone species to many ecosystems. They provide basic ecosystem services such as: seed dispersal, soil bioturbation, decomposition, and pest control. Within these ecosystems ants form complex symbiotic relationships with plants, fungi, and bacteria. Studying the interaction between ants and their bacteria is important because of the crucial role that microbes play in the overall health of ants. Aphaenogaster Mayr, 1853, which is a globally distributed ant genus, remains understudied in terms of their bacterial community. This study aims to determine the taxonomic composition and abundance of the Aphaenogaster bacterial community and to determine if development stage and species impact the bacterial community composition. For this study, ants from several colonies were collected from the Gordon Natural Area in West Chester, Pennsylvania, USA. DNA was then extracted from the ants in all stages of development and the 16S rRNA gene was amplified and sequencing following the NGS amplicon approach. The findings from this study reveal that species and development stage have a significant impact upon the bacterial community composition and abundance of Aphaenogaster ants, and Wolbachia is highly associated with these ants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Microbiology
Current Microbiology 生物-微生物学
CiteScore
4.80
自引率
3.80%
发文量
380
审稿时长
2.5 months
期刊介绍: Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment. Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas: physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.
期刊最新文献
Sphingosinicella rhizophila sp. nov., Isolated from Oat (Avena sativa L.) Rhizosphere Soil. Could Exotic Birds Play a Significant Role in the Emergence of Antibiotic-Resistant Microorganisms? Metagenomic Analysis of Surface Waters and Wastewater in the Colombian Andean Highlands: Implications for Health and Disease. Comparative Genomics Analysis of the Fish Pathogen Rahnella aquatilis KCL-5 Reveals Potential Multidrug Resistance and Virulence Properties. Designing, Synthesis and In Vitro Antimicrobial Activity of Peptide Against Biofilm Forming Methicillin Resistant Staphylococcus aureus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1