Comparison of the Immune Enhancing Activity and Chemical Constituents Between Imitation Wild and Cultivated Astragali Radix.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecules Pub Date : 2025-02-17 DOI:10.3390/molecules30040923
Shuo Zhao, Xueting Li, Yumeng Wang, Rui Xu, Xu Li, Jiushi Liu, Xiaolin Hou, Haitao Liu
{"title":"Comparison of the Immune Enhancing Activity and Chemical Constituents Between Imitation Wild and Cultivated Astragali Radix.","authors":"Shuo Zhao, Xueting Li, Yumeng Wang, Rui Xu, Xu Li, Jiushi Liu, Xiaolin Hou, Haitao Liu","doi":"10.3390/molecules30040923","DOIUrl":null,"url":null,"abstract":"<p><p>Astragali Radix (AR), a traditional food and medicinal herb used for thousands of years, is widely recognized for its role in enhancing immunity, particularly when combined with adjuvant chemotherapy. The two primary types of AR available in the market are imitation wild AR (grown for seven years) and cultivated AR (grown for two years). However, whether differences exist in their immune-enhancing effects and chemical constituents remains unclear. In this study, a comparative analysis was performed to evaluate the immune activity and chemical composition of cultivated and imitation wild AR. Immune activity was assessed through in vivo animal studies, while metabolomic analysis was used to characterize their chemical profiles. The results demonstrate that AR possesses significant antitumor and immune-enhancing activities, with imitation wild AR showing superior efficacy compared with cultivated AR. Following 16 days of daily AR treatment, both the thymus and spleen coefficients were significantly increased, effectively reversing the immune dysfunction induced by cyclophosphamide (CTX). Moreover, the administration of AR showed no significant toxicity, as evidenced by the stable liver and kidney function indicators, including ALT, UREA, and CRE levels. To investigate chemical differences, a customized chemotaxonomic-based in-house library containing 215 compounds was developed and integrated with the Progenesis QI informatics platform for metabolite annotation. Using multivariate analysis, 48 constituents were identified in total: 46 unique to the imitation wild AR and 45 specific to the cultivated AR. The correlation between chemical constituents and the pharmacological effects of AR was evaluated. Based on orthogonal partial least-squares discriminant analysis (OPLS-DA) and S-plot analysis, five potential biomarkers were identified, including Calycosin-7-glucoside, Rhamnocitrin-3-O-β-D-glucopyranoside, Ononin, 3,5-Dicaffeoylquinic acid, and Acetylastragaloside I. These biomarkers likely account for the differences in immune-enhancing effects between the two AR types. This study provides a scientific foundation for the rational use of Astragali Radix.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30040923","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Astragali Radix (AR), a traditional food and medicinal herb used for thousands of years, is widely recognized for its role in enhancing immunity, particularly when combined with adjuvant chemotherapy. The two primary types of AR available in the market are imitation wild AR (grown for seven years) and cultivated AR (grown for two years). However, whether differences exist in their immune-enhancing effects and chemical constituents remains unclear. In this study, a comparative analysis was performed to evaluate the immune activity and chemical composition of cultivated and imitation wild AR. Immune activity was assessed through in vivo animal studies, while metabolomic analysis was used to characterize their chemical profiles. The results demonstrate that AR possesses significant antitumor and immune-enhancing activities, with imitation wild AR showing superior efficacy compared with cultivated AR. Following 16 days of daily AR treatment, both the thymus and spleen coefficients were significantly increased, effectively reversing the immune dysfunction induced by cyclophosphamide (CTX). Moreover, the administration of AR showed no significant toxicity, as evidenced by the stable liver and kidney function indicators, including ALT, UREA, and CRE levels. To investigate chemical differences, a customized chemotaxonomic-based in-house library containing 215 compounds was developed and integrated with the Progenesis QI informatics platform for metabolite annotation. Using multivariate analysis, 48 constituents were identified in total: 46 unique to the imitation wild AR and 45 specific to the cultivated AR. The correlation between chemical constituents and the pharmacological effects of AR was evaluated. Based on orthogonal partial least-squares discriminant analysis (OPLS-DA) and S-plot analysis, five potential biomarkers were identified, including Calycosin-7-glucoside, Rhamnocitrin-3-O-β-D-glucopyranoside, Ononin, 3,5-Dicaffeoylquinic acid, and Acetylastragaloside I. These biomarkers likely account for the differences in immune-enhancing effects between the two AR types. This study provides a scientific foundation for the rational use of Astragali Radix.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
期刊最新文献
Co-Improvement in Electrocatalytic Hydrogen Evolution Performance of MoS2 by Ni Doping and Graphene Oxide Compounding. Promiscuity in Polyphenol-Protein Interactions-Monitoring Protein Conformational Change upon Polyphenol-Protein Binding by Nano-Differential Fluorimetry (Nano-DSF). Recent Advances in Resveratrol Derivatives: Structural Modifications and Biological Activities. Determination of the Polyphenol Composition of Raspberry Leaf Using LC-MS/MS. Cytochalasins from the Ash Endophytic Fungus Nemania diffusa DSM 116299.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1