Activated Carbons Derived from Brewing Cereal Residues and Pineapple Peelings for Removal of Acid Orange 7 (AO7) Dye.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecules Pub Date : 2025-02-14 DOI:10.3390/molecules30040881
Samadou Sanni, Ibrahim Tchakala, Tomkouani Kodom, Bonito Aristide Karamoko, Limam Moctar Bawa, Yaovi Holade
{"title":"Activated Carbons Derived from Brewing Cereal Residues and Pineapple Peelings for Removal of Acid Orange 7 (AO7) Dye.","authors":"Samadou Sanni, Ibrahim Tchakala, Tomkouani Kodom, Bonito Aristide Karamoko, Limam Moctar Bawa, Yaovi Holade","doi":"10.3390/molecules30040881","DOIUrl":null,"url":null,"abstract":"<p><p>The tremendous increase in agro-industrial waste poses major environmental problems and highlights the need for innovative, sustainable solutions. One promising solution would be converting these organic wastes, such as unvalued pineapple peels (ANA) and brewer's grains (ECB), into activated carbons to meet the impending challenge of wastewater treatment. In particular, Acid Orange 7 (AO7) is one of the most widely used synthetic dyes, a significant portion of which ends up in water, posing environmental and health problems with limiting decentralized and cost-effective solutions. To address these two challenges, we investigated the best conditions for converting these organic wastes into alternative activated carbons (named CA-ANA and CA-ECB) for AO7 dye removal under representative adsorption conditions. Extensive characterization (SEM, EDX, XRD, BET) revealed an amorphous, mesoporous structure with specific surface areas of 1150-1630 m<sup>2</sup> g<sup>-1</sup>, outperforming the majority of other biomass-derived activated carbons reported for AO7 removal. Adsorption followed pseudo-second-order kinetics and the Langmuir isotherm, with record AO7 removal efficiencies of 90-99% for AO7 concentrations of 25-35 mg L<sup>-1</sup> in a batch reactor, the driving forces being electrostatic attraction, π-π interactions, and hydrogen bonding. These results undoubtedly highlight the potential of current waste-derived activated carbons as sustainable solutions for efficient wastewater treatment.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30040881","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The tremendous increase in agro-industrial waste poses major environmental problems and highlights the need for innovative, sustainable solutions. One promising solution would be converting these organic wastes, such as unvalued pineapple peels (ANA) and brewer's grains (ECB), into activated carbons to meet the impending challenge of wastewater treatment. In particular, Acid Orange 7 (AO7) is one of the most widely used synthetic dyes, a significant portion of which ends up in water, posing environmental and health problems with limiting decentralized and cost-effective solutions. To address these two challenges, we investigated the best conditions for converting these organic wastes into alternative activated carbons (named CA-ANA and CA-ECB) for AO7 dye removal under representative adsorption conditions. Extensive characterization (SEM, EDX, XRD, BET) revealed an amorphous, mesoporous structure with specific surface areas of 1150-1630 m2 g-1, outperforming the majority of other biomass-derived activated carbons reported for AO7 removal. Adsorption followed pseudo-second-order kinetics and the Langmuir isotherm, with record AO7 removal efficiencies of 90-99% for AO7 concentrations of 25-35 mg L-1 in a batch reactor, the driving forces being electrostatic attraction, π-π interactions, and hydrogen bonding. These results undoubtedly highlight the potential of current waste-derived activated carbons as sustainable solutions for efficient wastewater treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
期刊最新文献
Co-Improvement in Electrocatalytic Hydrogen Evolution Performance of MoS2 by Ni Doping and Graphene Oxide Compounding. Promiscuity in Polyphenol-Protein Interactions-Monitoring Protein Conformational Change upon Polyphenol-Protein Binding by Nano-Differential Fluorimetry (Nano-DSF). Recent Advances in Resveratrol Derivatives: Structural Modifications and Biological Activities. Determination of the Polyphenol Composition of Raspberry Leaf Using LC-MS/MS. Cytochalasins from the Ash Endophytic Fungus Nemania diffusa DSM 116299.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1