Yang Du, Hui Zhang, Chi Deng, Xia Du, Yan Shang, Xuan Wang, Qingguo Chen, Zesheng Li
{"title":"The Structural Design of a New Graftable Antioxidant and the Theoretical Study of Its Role in the Cross-Linking Reaction Process of Polyethylene.","authors":"Yang Du, Hui Zhang, Chi Deng, Xia Du, Yan Shang, Xuan Wang, Qingguo Chen, Zesheng Li","doi":"10.3390/polym17040546","DOIUrl":null,"url":null,"abstract":"<p><p>Cross-linked polyethylene (XLPE) insulation is used in most advanced power cable technology. However, in traditional cross-linking, the conductivity of the cross-linking system sharply increases due to the presence of additives (antioxidants and cross-linked agents). Therefore, reducing the number of antioxidants to further reduce conductivity is a very promising method. The structural design of a new dual-functional antioxidant 5-allyloxy-2-hydroxyl-3-tert-butylbenzophenone (5ATB) has been established. The antioxidant behavior and grafting reaction of 5ATB after photocatalysis under ultraviolet (UV) conditions were further studied using density functional theory (DFT). The reaction potential energy information of the six reaction channels at the B3LYP/6-311+G(<i>d,p</i>) level were obtained. The calculation results indicated that the reaction Gibbs energy barrier of 5ATB with O<sub>2</sub> is approximately 0.48 eV lower than that of the polyethylene chain with O<sub>2</sub> to achieve an anti-oxidative effect. Furthermore, the reaction-active site of 5ATB accepting H is located on the C of CH<sub>2</sub> in a C=C double bond, as demonstrated by an analysis of NBO charge populations. The proposed mechanism has the potential to further expand the design concept of insulation materials for advanced future power cables.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859502/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17040546","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-linked polyethylene (XLPE) insulation is used in most advanced power cable technology. However, in traditional cross-linking, the conductivity of the cross-linking system sharply increases due to the presence of additives (antioxidants and cross-linked agents). Therefore, reducing the number of antioxidants to further reduce conductivity is a very promising method. The structural design of a new dual-functional antioxidant 5-allyloxy-2-hydroxyl-3-tert-butylbenzophenone (5ATB) has been established. The antioxidant behavior and grafting reaction of 5ATB after photocatalysis under ultraviolet (UV) conditions were further studied using density functional theory (DFT). The reaction potential energy information of the six reaction channels at the B3LYP/6-311+G(d,p) level were obtained. The calculation results indicated that the reaction Gibbs energy barrier of 5ATB with O2 is approximately 0.48 eV lower than that of the polyethylene chain with O2 to achieve an anti-oxidative effect. Furthermore, the reaction-active site of 5ATB accepting H is located on the C of CH2 in a C=C double bond, as demonstrated by an analysis of NBO charge populations. The proposed mechanism has the potential to further expand the design concept of insulation materials for advanced future power cables.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.