Circ-0001283 Aggravates Cardiac Hypertrophy by Targeting Myosin Light Chain 3 Protein.

IF 11 1区 综合性期刊 Q1 Multidisciplinary Research Pub Date : 2025-02-25 eCollection Date: 2025-01-01 DOI:10.34133/research.0626
Wenjing Wang, Lili Chen, Yiheng Zhao, Shuchen Zhang, Xiang Zhou
{"title":"Circ-0001283 Aggravates Cardiac Hypertrophy by Targeting Myosin Light Chain 3 Protein.","authors":"Wenjing Wang, Lili Chen, Yiheng Zhao, Shuchen Zhang, Xiang Zhou","doi":"10.34133/research.0626","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are differentially expressed in cardiac hypertrophy; however, the exact function and mechanisms during hypertrophy development are still unknown. Here, we explored the role of a newly discovered circRNA in the pathogenesis of myocardial hypertrophy. It was found that circ-0001283 promoted the progression of cardiac hypertrophy by interacting with myosin light chain 3 (MYL3) to inhibit the protein ubiquitination and enhance its protein expression, not by the competitive endogenous RNA mechanism. Further investigation demonstrated that the reduced hypertrophy induced by circ-0001283 knockdown was counteracted by overexpression of MYL3. Mechanistically, MYL3 facilitated myocardial hypertrophy by inducing autophagy in cells via PI3K/Akt/mTOR and ERK signaling pathways. In summary, circ-0001283 can bind directly to MYL3 and up-regulate its expression, thereby promoting autophagy to accelerate cardiac hypertrophy. Circ-0001283 may serve as a potential therapeutic target for cardiac hypertrophy.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0626"},"PeriodicalIF":11.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850654/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0626","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Circular RNAs (circRNAs) are differentially expressed in cardiac hypertrophy; however, the exact function and mechanisms during hypertrophy development are still unknown. Here, we explored the role of a newly discovered circRNA in the pathogenesis of myocardial hypertrophy. It was found that circ-0001283 promoted the progression of cardiac hypertrophy by interacting with myosin light chain 3 (MYL3) to inhibit the protein ubiquitination and enhance its protein expression, not by the competitive endogenous RNA mechanism. Further investigation demonstrated that the reduced hypertrophy induced by circ-0001283 knockdown was counteracted by overexpression of MYL3. Mechanistically, MYL3 facilitated myocardial hypertrophy by inducing autophagy in cells via PI3K/Akt/mTOR and ERK signaling pathways. In summary, circ-0001283 can bind directly to MYL3 and up-regulate its expression, thereby promoting autophagy to accelerate cardiac hypertrophy. Circ-0001283 may serve as a potential therapeutic target for cardiac hypertrophy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
期刊最新文献
Circ-0001283 Aggravates Cardiac Hypertrophy by Targeting Myosin Light Chain 3 Protein. Gecko-Inspired Intelligent Adhesive Structures for Rough Surfaces. Deep Learning for Predicting Biomolecular Binding Sites of Proteins. Molecular Mechanism of Oil-Infused Silicone Preventing Mussel Biofouling. Nano-/Microrobots for Environmental Remediation in the Eyes of Nanoarchitectonics: Toward Engineering on a Single-Atomic Scale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1