Characterization of a stable QTL for quality-related traits and its effects on yields in wheat (Triticum aestivum L.).

IF 4.4 1区 农林科学 Q1 AGRONOMY Theoretical and Applied Genetics Pub Date : 2025-02-26 DOI:10.1007/s00122-025-04852-9
Hongke Ding, Yankun Li, Jinlian Ou, Yuanze Song, Lihua Qiu, Xinyu Rong, Han Sun, Chunhua Zhao, Yongzhen Wu, Ran Qin, Jinlong Li, Cheng Liu, Fa Cui
{"title":"Characterization of a stable QTL for quality-related traits and its effects on yields in wheat (Triticum aestivum L.).","authors":"Hongke Ding, Yankun Li, Jinlian Ou, Yuanze Song, Lihua Qiu, Xinyu Rong, Han Sun, Chunhua Zhao, Yongzhen Wu, Ran Qin, Jinlong Li, Cheng Liu, Fa Cui","doi":"10.1007/s00122-025-04852-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>A total of 6 major stable QTLs and 59 pairwise epistatic eQTLs for quality-related traits were identified, and the candidate genes underlying qDt-KJ 4B, a novel major and stable QTL for dough tractility, were identified Wheat quality traits are usually negatively correlated with yield traits, but they affect the processing quality and nutritional value of wheat. Therefore, identifying more wheat quantitative trait loci (QTLs) and elucidating their genetic basis are essential for cultivating new high-quality and high-yielding wheat varieties. In this study, QTL analysis for five quality-related traits was performed on a recombinant inbred line (RIL) mapping population, KJ-RIL, derived from a cross between Kenong 9204 (KN9204) and Jing 411 (J411). A total of 6 major stable QTLs and 59 pairwise epistatic eQTLs (eQTLs) for dough tractility (DT), kernel hardness (KH), Zeleny sedimentation value (ZEL), water absorption (WAR) and wet gluten content (WGC) were identified in multiple environments. The genetic effects and additive pyramiding effects of the major and stable QTLs of qDt-KJ-4B on quality- and yield-related traits were characterized. The DT phenotypic values of the KJ-RILs increased with the number of favourable QTLs. BAB (only qDt-KJ-5D did not harbour favourable alleles) and BBA (only qDt-KJ-4A did not harbour favourable alleles) were the best combination for improving both the quality and yield potential of qDt-KJ-4B, qDt-KJ-4A and qDt-KJ-5D. The candidate genes underlying qDt-KJ-4B were predicted on the basis of multiomics data, with TraesKN4B01HG03930 and TraesKN4B01HG03950 as the most likely candidate genes. Overall, our results are helpful for elucidating the genetic relationships between quality- and yield-related traits and will aid in future development of new high-quality and high-yield wheat varieties to meet diverse consumption needs.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 3","pages":"56"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-04852-9","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: A total of 6 major stable QTLs and 59 pairwise epistatic eQTLs for quality-related traits were identified, and the candidate genes underlying qDt-KJ 4B, a novel major and stable QTL for dough tractility, were identified Wheat quality traits are usually negatively correlated with yield traits, but they affect the processing quality and nutritional value of wheat. Therefore, identifying more wheat quantitative trait loci (QTLs) and elucidating their genetic basis are essential for cultivating new high-quality and high-yielding wheat varieties. In this study, QTL analysis for five quality-related traits was performed on a recombinant inbred line (RIL) mapping population, KJ-RIL, derived from a cross between Kenong 9204 (KN9204) and Jing 411 (J411). A total of 6 major stable QTLs and 59 pairwise epistatic eQTLs (eQTLs) for dough tractility (DT), kernel hardness (KH), Zeleny sedimentation value (ZEL), water absorption (WAR) and wet gluten content (WGC) were identified in multiple environments. The genetic effects and additive pyramiding effects of the major and stable QTLs of qDt-KJ-4B on quality- and yield-related traits were characterized. The DT phenotypic values of the KJ-RILs increased with the number of favourable QTLs. BAB (only qDt-KJ-5D did not harbour favourable alleles) and BBA (only qDt-KJ-4A did not harbour favourable alleles) were the best combination for improving both the quality and yield potential of qDt-KJ-4B, qDt-KJ-4A and qDt-KJ-5D. The candidate genes underlying qDt-KJ-4B were predicted on the basis of multiomics data, with TraesKN4B01HG03930 and TraesKN4B01HG03950 as the most likely candidate genes. Overall, our results are helpful for elucidating the genetic relationships between quality- and yield-related traits and will aid in future development of new high-quality and high-yield wheat varieties to meet diverse consumption needs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
期刊最新文献
Characterization of a stable QTL for quality-related traits and its effects on yields in wheat (Triticum aestivum L.). Identification and validation of quantitative trait loci for seven quality-related traits in common wheat (Triticum aestivum L.). Integrating phenomic selection using single-kernel near-infrared spectroscopy and genomic selection for corn breeding improvement. Mapping and functional characterization of the golden fruit 1 (gf1) in melon (Cucumis melo L.). QTN detection and candidate gene identification for improved eating and cooking quality in rice using GWAS and PLS regression analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1