Therapeutic Approach to Epilepsy in Patients with Mitochondrial Diseases.

IF 2.6 4区 医学 Q1 MEDICINE, GENERAL & INTERNAL Yonsei Medical Journal Pub Date : 2025-03-01 DOI:10.3349/ymj.2024.0325
Ji-Hoon Na, Young-Mock Lee
{"title":"Therapeutic Approach to Epilepsy in Patients with Mitochondrial Diseases.","authors":"Ji-Hoon Na, Young-Mock Lee","doi":"10.3349/ymj.2024.0325","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial diseases (MDs) are genetic disorders with diverse phenotypes that affect high-energy-demand organs, notably the central nervous system and muscles. Epilepsy is a common comorbidity, affecting 40%-60% of patients with MDs and significantly reducing their quality of life. This review discusses the different treatment modalities for epilepsy in patients with MDs. Advances in genetic sequencing have identified specific mutations in mitochondrial and nuclear DNA, enabling more precise diagnoses and tailored therapeutic strategies. Anti-seizure medications and dietary interventions, such as ketogenic diets and their variants, have been effective in reducing seizures and improving mitochondrial function. Emerging treatments include gene therapy, mitochondrial transplantation, and antioxidants such as EPI-743, which protect mitochondrial integrity and improve neurological function. Additionally, therapies that promote mitochondrial biogenesis, such as bezafibrate and epicatechin, are being explored for their potential to enhance mitochondrial proliferation and energy production. Gene therapy aims to correct genetic defects underlying MDs. Techniques like mitochondrial gene replacement and using viral vectors to deliver functional genes have shown promise in preclinical studies. Mitochondrial transplantation, an emerging experimental technique, involves transferring healthy mitochondria into cells with dysfunctional mitochondria. This technique has been demonstrated to restore mitochondrial function and energy metabolism in preclinical models. Patient-derived induced pluripotent stem cells can model specific mitochondrial dysfunctions in vitro, allowing for the testing of various treatments tailored to individual genetic and biochemical profiles. The future of mitochondrial medicine is promising, with the development of more targeted and personalized therapeutic strategies offering hope for improved management and prognosis of mitochondrial epilepsy.</p>","PeriodicalId":23765,"journal":{"name":"Yonsei Medical Journal","volume":"66 3","pages":"131-140"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yonsei Medical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3349/ymj.2024.0325","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial diseases (MDs) are genetic disorders with diverse phenotypes that affect high-energy-demand organs, notably the central nervous system and muscles. Epilepsy is a common comorbidity, affecting 40%-60% of patients with MDs and significantly reducing their quality of life. This review discusses the different treatment modalities for epilepsy in patients with MDs. Advances in genetic sequencing have identified specific mutations in mitochondrial and nuclear DNA, enabling more precise diagnoses and tailored therapeutic strategies. Anti-seizure medications and dietary interventions, such as ketogenic diets and their variants, have been effective in reducing seizures and improving mitochondrial function. Emerging treatments include gene therapy, mitochondrial transplantation, and antioxidants such as EPI-743, which protect mitochondrial integrity and improve neurological function. Additionally, therapies that promote mitochondrial biogenesis, such as bezafibrate and epicatechin, are being explored for their potential to enhance mitochondrial proliferation and energy production. Gene therapy aims to correct genetic defects underlying MDs. Techniques like mitochondrial gene replacement and using viral vectors to deliver functional genes have shown promise in preclinical studies. Mitochondrial transplantation, an emerging experimental technique, involves transferring healthy mitochondria into cells with dysfunctional mitochondria. This technique has been demonstrated to restore mitochondrial function and energy metabolism in preclinical models. Patient-derived induced pluripotent stem cells can model specific mitochondrial dysfunctions in vitro, allowing for the testing of various treatments tailored to individual genetic and biochemical profiles. The future of mitochondrial medicine is promising, with the development of more targeted and personalized therapeutic strategies offering hope for improved management and prognosis of mitochondrial epilepsy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Yonsei Medical Journal
Yonsei Medical Journal 医学-医学:内科
CiteScore
4.50
自引率
0.00%
发文量
167
审稿时长
3 months
期刊介绍: The goal of the Yonsei Medical Journal (YMJ) is to publish high quality manuscripts dedicated to clinical or basic research. Any authors affiliated with an accredited biomedical institution may submit manuscripts of original articles, review articles, case reports, brief communications, and letters to the Editor.
期刊最新文献
Differences in Treatment Outcomes Depending on the Adjuvant Treatment Modality in Craniopharyngioma. Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary. Elevated Soluble Suppressor of Tumorigenicity 2 Levels in Gout Patients and Its Association with Cardiovascular Disease Risk Indicators. Feasibility of a Machine Learning Classifier for Predicting Post-Induction Hypotension in Non-Cardiac Surgery. Non-Inferiority Analysis of Electrocardiography Analysis Application vs. Point-of-Care Ultrasound for Screening Left Ventricular Dysfunction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1