Florian Dunker-Seidler, Kathrin Breunig, Magdalena Haubner, Florian Sonntag, Markus Hörer, Rebecca C Feiner
{"title":"Recombinant AAV batch profiling by nanopore sequencing elucidates product-related DNA impurities and vector genome length distribution.","authors":"Florian Dunker-Seidler, Kathrin Breunig, Magdalena Haubner, Florian Sonntag, Markus Hörer, Rebecca C Feiner","doi":"10.1016/j.omtm.2025.101417","DOIUrl":null,"url":null,"abstract":"<p><p>During production, recombinant adeno-associated virus (rAAV) capsids are equipped with heterogeneous genetic payloads including undesired DNA impurities as well as truncated vector genomes. Comprehensive analysis of encapsidated DNA by long-read next-generation sequencing is destined to guide platform optimization and provide crucial insights into safety of gene therapies. We used nanopore sequencing for in-depth profiling of an rAAV9 batch produced using our proprietary split two-plasmid system in a 50-L bioreactor. We compared three methods for single-strand to double-strand DNA conversion and their impact on the sequencing data. We observed a distinct library size profile but comparable impurity distribution. We contrasted recent nanopore sequencing advancements such as the V14 chemistry and dorado basecalling software with the widespread V9 chemistry and detected a markedly increased read quality. Our data highlight a high vector batch quality with low plasmid-derived and host cell DNA impurities of random origin, critical for mitigating associated safety risks. Finally, we compared nanopore data with orthogonal SMRT sequencing data and observed a higher base quality, but largely similar length and impurity profiles. Taken together, nanopore sequencing is a state-of-the-art method for comprehensive, in-depth rAAV vector batch analysis during all stages of gene therapy development.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"33 1","pages":"101417"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850753/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2025.101417","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
During production, recombinant adeno-associated virus (rAAV) capsids are equipped with heterogeneous genetic payloads including undesired DNA impurities as well as truncated vector genomes. Comprehensive analysis of encapsidated DNA by long-read next-generation sequencing is destined to guide platform optimization and provide crucial insights into safety of gene therapies. We used nanopore sequencing for in-depth profiling of an rAAV9 batch produced using our proprietary split two-plasmid system in a 50-L bioreactor. We compared three methods for single-strand to double-strand DNA conversion and their impact on the sequencing data. We observed a distinct library size profile but comparable impurity distribution. We contrasted recent nanopore sequencing advancements such as the V14 chemistry and dorado basecalling software with the widespread V9 chemistry and detected a markedly increased read quality. Our data highlight a high vector batch quality with low plasmid-derived and host cell DNA impurities of random origin, critical for mitigating associated safety risks. Finally, we compared nanopore data with orthogonal SMRT sequencing data and observed a higher base quality, but largely similar length and impurity profiles. Taken together, nanopore sequencing is a state-of-the-art method for comprehensive, in-depth rAAV vector batch analysis during all stages of gene therapy development.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.