Combining molecular characteristics and therapeutic analysis of PDOs predict clinical responses and guide PDAC personalized treatment.

IF 11.4 1区 医学 Q1 ONCOLOGY Journal of Experimental & Clinical Cancer Research Pub Date : 2025-02-26 DOI:10.1186/s13046-025-03332-8
Peng Li, Minli Huang, Mengyao Li, Gen Li, Yifan Ma, Yong Zhao, Xiaowu Wang, Yongbin Zhang, Changhong Shi
{"title":"Combining molecular characteristics and therapeutic analysis of PDOs predict clinical responses and guide PDAC personalized treatment.","authors":"Peng Li, Minli Huang, Mengyao Li, Gen Li, Yifan Ma, Yong Zhao, Xiaowu Wang, Yongbin Zhang, Changhong Shi","doi":"10.1186/s13046-025-03332-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The emergence of targeted therapies and immunotherapy has broadened treatment options for patients with pancreatic ductal adenocarcinoma (PDAC). Despite this, traditional drug selection, predominantly relies on tumor markers and clinical staging, has underutilized these drugs due to ignoring patient genomic diversity. Patient-derived organoids (PDOs) and corresponding patient-derived organoid xenograft (PDOX) models offer a way to better understand and address this.</p><p><strong>Methods: </strong>In this study, we established PDOs and PDOX models from PDAC clinical samples. These models were analyzed using immunohistochemistry, H&E staining, and genomic profiling. Drug screening with 111 FDA-approved drugs was performed on PDOs, and drug responses in PDOs and PDOX models were compared to assess consistency with clinical treatment outcomes. Gene analysis was conducted to explore the molecular mechanisms underlying variations in drug responses. Additionally, by analyzing the sequencing results from various drug-sensitive groups, the identified differential gene-drug metabolism gene UGT1A10 were modulated in PDOs to evaluate its impact on drug efficacy. A co-culture system of PDOs with immune cells was developed to study the efficacy of immunotherapies.</p><p><strong>Results: </strong>PDOs and matched PDOX models retain the morphological, biological, and genomic characteristics of the primary tumor. Exome sequencing and RNA sequencing confirmed both the consistency and heterogeneity among the PDOs. High-throughput drug screening revealed significant variability in drug sensitivity across different organoids, yet PDOs and PDOX derived from the same patient exhibited a high degree of concordance in response to clinical chemotherapy agents. The gene expression analysis of PDOs with significant differences in drug sensitivity revealed UGT1A10 as a crucial regulator. The knockdown of UGT1A10 notably increased drug sensitivity. Furthermore, immune cells demonstrated specific cytotoxicity towards the organoids, underscoring the potential of the co-culture system for application in tumor immunotherapy.</p><p><strong>Conclusion: </strong>Our results highlight the necessity for personalized treatment strategies that consider genomic diversity beyond tumor markers, thus validating the utility of PDOs and PDOX models in advancing PDAC research and personalized medicine.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"72"},"PeriodicalIF":11.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863571/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03332-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The emergence of targeted therapies and immunotherapy has broadened treatment options for patients with pancreatic ductal adenocarcinoma (PDAC). Despite this, traditional drug selection, predominantly relies on tumor markers and clinical staging, has underutilized these drugs due to ignoring patient genomic diversity. Patient-derived organoids (PDOs) and corresponding patient-derived organoid xenograft (PDOX) models offer a way to better understand and address this.

Methods: In this study, we established PDOs and PDOX models from PDAC clinical samples. These models were analyzed using immunohistochemistry, H&E staining, and genomic profiling. Drug screening with 111 FDA-approved drugs was performed on PDOs, and drug responses in PDOs and PDOX models were compared to assess consistency with clinical treatment outcomes. Gene analysis was conducted to explore the molecular mechanisms underlying variations in drug responses. Additionally, by analyzing the sequencing results from various drug-sensitive groups, the identified differential gene-drug metabolism gene UGT1A10 were modulated in PDOs to evaluate its impact on drug efficacy. A co-culture system of PDOs with immune cells was developed to study the efficacy of immunotherapies.

Results: PDOs and matched PDOX models retain the morphological, biological, and genomic characteristics of the primary tumor. Exome sequencing and RNA sequencing confirmed both the consistency and heterogeneity among the PDOs. High-throughput drug screening revealed significant variability in drug sensitivity across different organoids, yet PDOs and PDOX derived from the same patient exhibited a high degree of concordance in response to clinical chemotherapy agents. The gene expression analysis of PDOs with significant differences in drug sensitivity revealed UGT1A10 as a crucial regulator. The knockdown of UGT1A10 notably increased drug sensitivity. Furthermore, immune cells demonstrated specific cytotoxicity towards the organoids, underscoring the potential of the co-culture system for application in tumor immunotherapy.

Conclusion: Our results highlight the necessity for personalized treatment strategies that consider genomic diversity beyond tumor markers, thus validating the utility of PDOs and PDOX models in advancing PDAC research and personalized medicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
18.20
自引率
1.80%
发文量
333
审稿时长
1 months
期刊介绍: The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications. We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options. We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us. We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community. By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.
期刊最新文献
A chimeric antigen receptor tailored to integrate complementary activation signals potentiates the antitumor activity of NK cells. A blood-based liquid biopsy analyzing soluble immune checkpoints and cytokines identifies distinct neuroendocrine tumors. C-terminal binding protein-2 triggers CYR61-induced metastatic dissemination of osteosarcoma in a non-hypoxic microenvironment. Multiple mechanisms and applications of tertiary lymphoid structures and immune checkpoint blockade. Head and neck tumor organoid biobank for modelling individual responses to radiation therapy according to the TP53/HPV status.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1