SqueezeCall: nanopore basecalling using a Squeezeformer network.

IF 1.2 GigaByte (Hong Kong, China) Pub Date : 2025-02-14 eCollection Date: 2025-01-01 DOI:10.46471/gigabyte.148
Zhongxu Zhu
{"title":"SqueezeCall: nanopore basecalling using a Squeezeformer network.","authors":"Zhongxu Zhu","doi":"10.46471/gigabyte.148","DOIUrl":null,"url":null,"abstract":"<p><p>Nanopore sequencing, a third-generation sequencing technique, enables direct RNA sequencing, real-time analysis, and long-read length. Nanopore sequencers measure electrical current changes as nucleotides pass through nanopores; a basecaller identifies base sequences according to the raw current measurements. However, accurate basecalling remains challenging due to molecular variations and sequencing noise. Here, we introduce SqueezeCall, a novel Squeezeformer-based model for accurate nanopore basecalling. SqueezeCall uses convolution layers to down-sample raw signals and model local dependencies. A Squeezeformer network captures the global context, and a connectionist temporal classification (CTC) decoder with beam search generates DNA sequences. Experimental results demonstrated SqueezeCall's ability to resist noise, improving basecalling accuracy. We trained SqueezeCall combining three types of loss, and found that all three loss types contribute to basecalling accuracy. Experiments across multiple species demonstrated the potential of a Squeezeformer-based model to improve basecalling accuracy and its superiority over recurrent neural network-based models and Transformer-based models.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2025 ","pages":"gigabyte148"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851125/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaByte (Hong Kong, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46471/gigabyte.148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanopore sequencing, a third-generation sequencing technique, enables direct RNA sequencing, real-time analysis, and long-read length. Nanopore sequencers measure electrical current changes as nucleotides pass through nanopores; a basecaller identifies base sequences according to the raw current measurements. However, accurate basecalling remains challenging due to molecular variations and sequencing noise. Here, we introduce SqueezeCall, a novel Squeezeformer-based model for accurate nanopore basecalling. SqueezeCall uses convolution layers to down-sample raw signals and model local dependencies. A Squeezeformer network captures the global context, and a connectionist temporal classification (CTC) decoder with beam search generates DNA sequences. Experimental results demonstrated SqueezeCall's ability to resist noise, improving basecalling accuracy. We trained SqueezeCall combining three types of loss, and found that all three loss types contribute to basecalling accuracy. Experiments across multiple species demonstrated the potential of a Squeezeformer-based model to improve basecalling accuracy and its superiority over recurrent neural network-based models and Transformer-based models.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SqueezeCall:使用Squeezeformer网络的纳米孔基调用。
纳米孔测序是第三代测序技术,可实现直接 RNA 测序、实时分析和长读数长度。纳米孔测序仪测量核苷酸通过纳米孔时的电流变化;基数呼应器根据原始电流测量值识别基数序列。然而,由于分子变异和测序噪音,准确的碱基识别仍然具有挑战性。在此,我们介绍一种基于 Squeezeformer 的新型模型 SqueezeCall,用于精确的纳米孔基数调用。SqueezeCall 使用卷积层对原始信号进行下采样,并对局部依赖性进行建模。一个 Squeezeformer 网络捕捉全局上下文,一个带有波束搜索功能的连接时序分类(CTC)解码器生成 DNA 序列。实验结果表明,SqueezeCall 具有抗噪能力,从而提高了基呼准确率。我们结合三种损失类型对 SqueezeCall 进行了训练,发现所有三种损失类型都有助于提高基呼准确率。多个物种的实验证明,基于 Squeezeformer 的模型具有提高基呼准确率的潜力,而且比基于递归神经网络的模型和基于 Transformer 的模型更有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
Insecticide resistance dynamics in Aedes mosquitoes in Ghana. Spatial and temporal distribution of Culex and Aedes mosquitoes in Ghana. Potential vectors associated to Oropouche virus transmission in Cuba, 2024. Collection of entomological, demographic, water and sanitation, and climatic data of interest for arbovirus surveillance in Praia, Cabo Verde. Aedes mosquito distribution across urban and peri-urban areas of Kinshasa city, Democratic Republic of Congo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1