How I Investigate Measurable Residual Disease in B-Cell Precursor Acute Lymphoblastic Leukemia After Therapy With Bi-Specific Monoclonal Antibodies and 19CAR-T Cells.

Maura Rosane Valerio Ikoma-Colturato, Felipe Magalhães Furtado, Elen de Oliveira, Fabiola Gevert, Roberia Mendonça
{"title":"How I Investigate Measurable Residual Disease in B-Cell Precursor Acute Lymphoblastic Leukemia After Therapy With Bi-Specific Monoclonal Antibodies and 19CAR-T Cells.","authors":"Maura Rosane Valerio Ikoma-Colturato, Felipe Magalhães Furtado, Elen de Oliveira, Fabiola Gevert, Roberia Mendonça","doi":"10.1111/ijlh.14448","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Measurable residual disease (MRD) in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) following anti-CD19 targeted therapies requires specific strategies to identify residual blast cells due to loss or reduced CD19 expression that makes it inconsistent as a primitive marker for B-cell gating.</p><p><strong>Objective: </strong>Due to the increased access of BCP-ALL patients to therapies with CD3/CD19 bispecific T-cell engagers (BiTe) and CD19-targeted chimeric antigen receptor T-Cell (CAR-T), it is essential that flow cytometry laboratories are prepared to evaluate therapeutic responses.</p><p><strong>Material and methods: </strong>Here, validated strategies for MRD detection in the context of anti-CD19 therapies are described, accessible to flow cytometry laboratories according to their different facilities. The paper includes an 8-color flow cytometry (FC) strategy for BCP-ALL MRD based on alternative gating without the use of additional markers (Euroflow protocol), as well as other strategies using alternative markers to CD19, comprising 2 protocols using 8 colors, one using 10 colors and another 14 colors/15 markers.</p><p><strong>Conclusion: </strong>Different strategies are needed to detect MRD without using CD19 for B-cell population gating after CD19-targeted therapies. However, it is essential that validated protocols are used according to the available resources to ensure reliable results for clinical decision-making.</p>","PeriodicalId":94050,"journal":{"name":"International journal of laboratory hematology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of laboratory hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/ijlh.14448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Measurable residual disease (MRD) in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) following anti-CD19 targeted therapies requires specific strategies to identify residual blast cells due to loss or reduced CD19 expression that makes it inconsistent as a primitive marker for B-cell gating.

Objective: Due to the increased access of BCP-ALL patients to therapies with CD3/CD19 bispecific T-cell engagers (BiTe) and CD19-targeted chimeric antigen receptor T-Cell (CAR-T), it is essential that flow cytometry laboratories are prepared to evaluate therapeutic responses.

Material and methods: Here, validated strategies for MRD detection in the context of anti-CD19 therapies are described, accessible to flow cytometry laboratories according to their different facilities. The paper includes an 8-color flow cytometry (FC) strategy for BCP-ALL MRD based on alternative gating without the use of additional markers (Euroflow protocol), as well as other strategies using alternative markers to CD19, comprising 2 protocols using 8 colors, one using 10 colors and another 14 colors/15 markers.

Conclusion: Different strategies are needed to detect MRD without using CD19 for B-cell population gating after CD19-targeted therapies. However, it is essential that validated protocols are used according to the available resources to ensure reliable results for clinical decision-making.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of the Use of Available Resources for Diagnosing Diffuse Large B-Cell Lymphoma in an HIV-Prevalent Setting. The Diagnostic Performance of a Sysmex XN-31 Automated Malaria Analyzer vs. Expert Microscopy. Automated Von Willebrand Factor Multimer Image Analysis for Improved Diagnosis and Classification of Von Willebrand Disease. Liquid Biopsy for Enhanced Specificity in Identifying Somatic Mutations in Aggressive Non-Hodgkin Large B-Cell Lymphoma: A Comparative Study of Cell-Free DNA and Formalin-Fixed Paraffin-Embedded Tissue. How I Investigate Measurable Residual Disease in B-Cell Precursor Acute Lymphoblastic Leukemia After Therapy With Bi-Specific Monoclonal Antibodies and 19CAR-T Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1