Kari Lavikka, Altti Ilari Maarala, Jaana Oikkonen, Sampsa Hautaniemi
{"title":"Jellyfish: integrative visualization of spatio-temporal tumor evolution and clonal dynamics.","authors":"Kari Lavikka, Altti Ilari Maarala, Jaana Oikkonen, Sampsa Hautaniemi","doi":"10.1093/bioinformatics/btaf091","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Spatial and temporal intra-tumor heterogeneity drives tumor evolution and therapy resistance. Existing visualization tools often fail to capture both dimensions simultaneously. To address this, we developed Jellyfish, a tool that integrates phylogenetic and sample trees into a single plot, providing a holistic view of tumor evolution and capturing both spatial and temporal evolution. Available as a JavaScript library and R package, Jellyfish generates interactive visualizations from tumor phylogeny and clonal composition data. We demonstrate its ability to visualize complex subclonal dynamics using data from ovarian high-grade serous carcinoma.</p><p><strong>Availability and implementation: </strong>Jellyfish is freely available with MIT license at https://github.com/HautaniemiLab/jellyfish (JavaScript library) and https://github.com/HautaniemiLab/jellyfisher (R package).</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Summary: Spatial and temporal intra-tumor heterogeneity drives tumor evolution and therapy resistance. Existing visualization tools often fail to capture both dimensions simultaneously. To address this, we developed Jellyfish, a tool that integrates phylogenetic and sample trees into a single plot, providing a holistic view of tumor evolution and capturing both spatial and temporal evolution. Available as a JavaScript library and R package, Jellyfish generates interactive visualizations from tumor phylogeny and clonal composition data. We demonstrate its ability to visualize complex subclonal dynamics using data from ovarian high-grade serous carcinoma.
Availability and implementation: Jellyfish is freely available with MIT license at https://github.com/HautaniemiLab/jellyfish (JavaScript library) and https://github.com/HautaniemiLab/jellyfisher (R package).