{"title":"Unexpected structural scaling and predictability in carbon nanotubes","authors":"Guohai Chen, Kazufumi Kobashi, Don N. Futaba","doi":"10.1016/j.jmst.2024.12.068","DOIUrl":null,"url":null,"abstract":"Carbon nanotubes (CNTs) hold immense promise for a wide array of applications due to their exceptional physical and chemical properties. Understanding and controlling their structural characteristics, particularly the diameter and number of walls, is crucial for harnessing their full potential. We investigated the relationship between these parameters for both commercially available and lab-scale CNTs, spanning a wide range of outer diameters (1–13 nm) and numbers of walls (1–13). Our findings revealed a commonality among the structural diversity, rather than a random distribution, as evidenced by a piecewise linear relationship between the outer diameter and number of walls, with an inflection point occurring at approximately 4 nm in diameter. This observation is unexpected, as the CNTs were synthesized using different approaches and growth conditions; yet, as a group, they exhibit a “structural scaling”. Additionally, we made an intriguing observation: despite increases in outer diameter and number of walls, the inner diameters remained relatively constant (4–5 nm) for thicker CNTs with more than three walls. These results suggest that structural properties can be estimated based on diameter, which not only advances our fundamental understanding of CNT synthesis but also provides practical insights for tailoring CNT properties for various applications.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"51 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.12.068","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon nanotubes (CNTs) hold immense promise for a wide array of applications due to their exceptional physical and chemical properties. Understanding and controlling their structural characteristics, particularly the diameter and number of walls, is crucial for harnessing their full potential. We investigated the relationship between these parameters for both commercially available and lab-scale CNTs, spanning a wide range of outer diameters (1–13 nm) and numbers of walls (1–13). Our findings revealed a commonality among the structural diversity, rather than a random distribution, as evidenced by a piecewise linear relationship between the outer diameter and number of walls, with an inflection point occurring at approximately 4 nm in diameter. This observation is unexpected, as the CNTs were synthesized using different approaches and growth conditions; yet, as a group, they exhibit a “structural scaling”. Additionally, we made an intriguing observation: despite increases in outer diameter and number of walls, the inner diameters remained relatively constant (4–5 nm) for thicker CNTs with more than three walls. These results suggest that structural properties can be estimated based on diameter, which not only advances our fundamental understanding of CNT synthesis but also provides practical insights for tailoring CNT properties for various applications.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.