Solidification of a nickel-based superalloy containing copper: A study combined with experiment and phase-field simulation

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Journal of Alloys and Compounds Pub Date : 2025-02-27 DOI:10.1016/j.jallcom.2025.179477
Shuting Cao, Tongzhao Gong, Shaohua Zhang, Jian Zhang, Yun Chen, Xing-Qiu Chen, Dianzhong Li
{"title":"Solidification of a nickel-based superalloy containing copper: A study combined with experiment and phase-field simulation","authors":"Shuting Cao, Tongzhao Gong, Shaohua Zhang, Jian Zhang, Yun Chen, Xing-Qiu Chen, Dianzhong Li","doi":"10.1016/j.jallcom.2025.179477","DOIUrl":null,"url":null,"abstract":"This work systematically investigates the influence of the Cu element on the solidification characteristics of GH4061, a novel burning-resistant nickel-based superalloy, through the combination of experimental characterization and phase-field simulation, along with an exploration of the underlying mechanisms. It has been revealed that with the Cu content increasing, the as-cast grain size, secondary dendrite arm spacing, and the volume fraction and size of primary carbides in the alloy initially increased before subsequently decreasing. Moreover, the morphology of primary carbides will also transform from a long strip to a block structure. These phenomena observed can be elucidated by the interaction among the competitive dynamics of matrix phase grain nucleation and growth, the solid-liquid interface energy and solute element diffusion, as well as the segregation of carbide-forming elements and the overall solidification path. The findings of this work will contribute to the design and fabrication of new high-temperature structural materials that exhibit improved burning resistance through the further optimization of alloy composition.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"31 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.179477","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work systematically investigates the influence of the Cu element on the solidification characteristics of GH4061, a novel burning-resistant nickel-based superalloy, through the combination of experimental characterization and phase-field simulation, along with an exploration of the underlying mechanisms. It has been revealed that with the Cu content increasing, the as-cast grain size, secondary dendrite arm spacing, and the volume fraction and size of primary carbides in the alloy initially increased before subsequently decreasing. Moreover, the morphology of primary carbides will also transform from a long strip to a block structure. These phenomena observed can be elucidated by the interaction among the competitive dynamics of matrix phase grain nucleation and growth, the solid-liquid interface energy and solute element diffusion, as well as the segregation of carbide-forming elements and the overall solidification path. The findings of this work will contribute to the design and fabrication of new high-temperature structural materials that exhibit improved burning resistance through the further optimization of alloy composition.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
期刊最新文献
Solidification of a nickel-based superalloy containing copper: A study combined with experiment and phase-field simulation Improving the Recovery Properties of Near-spherical Porous NiTi Alloys by Controlling Ni4Ti3 Precipitation Enhanced Acetone Gas Sensing Performance of SnO2/Zn2SnO4 Heterojunctions Incorporated with MXene: Experimental and Theoretical Insights Al doped Mn2O3/2-Methylimidazole composites enhancing reaction kinetics for zinc ion batteries Grain refinement and element partitioning in ultrasound-assisted wire and electron beam additively manufactured Udimet 500 nickel superalloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1