{"title":"Oscillating Turing patterns, chaos and strange attractors in a reaction–diffusion system augmented with self- and cross-diffusion terms","authors":"Benjamin Aymard","doi":"10.1016/j.chaos.2025.116181","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we introduce an original model in order to study the emergence of chaos in a reaction diffusion system in the presence of self- and cross-diffusion terms. A Fourier Spectral Method is derived to approximate equilibria and orbits of the latter. Special attention is paid to accuracy, a necessary condition when one wants to catch periodic orbits and to perform their linear stability analysis via Floquet multipliers. Bifurcations with respect to a single control parameter are studied in four different regimes of diffusion: linear diffusion, self-diffusion for each of the two species, and cross-diffusion. Key observations are made: development of original Turing patterns, supercritical Hopf bifurcations leading to oscillating patterns and period doubling cascades leading to chaos. Eventually, original strange attractors are reported in phase space.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"194 ","pages":"Article 116181"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925001948","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article we introduce an original model in order to study the emergence of chaos in a reaction diffusion system in the presence of self- and cross-diffusion terms. A Fourier Spectral Method is derived to approximate equilibria and orbits of the latter. Special attention is paid to accuracy, a necessary condition when one wants to catch periodic orbits and to perform their linear stability analysis via Floquet multipliers. Bifurcations with respect to a single control parameter are studied in four different regimes of diffusion: linear diffusion, self-diffusion for each of the two species, and cross-diffusion. Key observations are made: development of original Turing patterns, supercritical Hopf bifurcations leading to oscillating patterns and period doubling cascades leading to chaos. Eventually, original strange attractors are reported in phase space.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.