Alkaline catalytic liquefaction of pig manure fermentation residue in ethanol solvent for the production of high-quality biocrude oil

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Waste management Pub Date : 2025-02-27 DOI:10.1016/j.wasman.2025.02.035
Jialong Tang , Jingchen Zou , Qianlan Li , Qingdan Wu , Xiaochen Zheng , Jun Fang , Zhihua Xiao
{"title":"Alkaline catalytic liquefaction of pig manure fermentation residue in ethanol solvent for the production of high-quality biocrude oil","authors":"Jialong Tang ,&nbsp;Jingchen Zou ,&nbsp;Qianlan Li ,&nbsp;Qingdan Wu ,&nbsp;Xiaochen Zheng ,&nbsp;Jun Fang ,&nbsp;Zhihua Xiao","doi":"10.1016/j.wasman.2025.02.035","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread application of biogas projects generates substantial amounts of waste fermentation residue. Further treatment of fermentation residues facilitates resource utilization, ensures safe disposal, and is anticipated to enhance the economic returns of biogas projects. Herein, catalytic liquefaction of pig manure fermentation residue to produce biocrude oil was investigated using various alkaline catalysts at 340 ℃ with ethanol as the solvent. Biocrude oils were analyzed by elemental analysis, gas chromatography-mass spectrometry (GC–MS), thermogravimetric analysis, and kinetic analysis. The maximum biocrude oil yield (45.24 wt%) was obtained with the KOH catalyst. Additionally, the biocrude oil produced by the catalysis of CaO exhibited the maximum higher heating value at 44.18 MJ/kg. GC–MS results showed that KOH and K<sub>2</sub>CO<sub>3</sub> considerably increased the content of phenols and hydrocarbons in the biocrude while reducing nitrogenous compounds. All alkaline catalysts effectively reduced the activation energy of biocrude oil compared to biocrude oil without catalyst. The maximum reduction in activation energy (18.73 %) was achieved with the addition of Na<sub>2</sub>CO<sub>3</sub>. More importantly, adding CaO not only increased the yield and higher heating value of biocrude oil but also reduced nitrogenous compounds and activation energy, improving the overall yield and quality. Overall, this work provides an effective and promising method to convert pig manure fermentation residue into green high-quality biocrude oil, simultaneously providing an economical and environmentally friendly waste management strategy for the fermentation industry.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"197 ","pages":"Pages 86-93"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25000984","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread application of biogas projects generates substantial amounts of waste fermentation residue. Further treatment of fermentation residues facilitates resource utilization, ensures safe disposal, and is anticipated to enhance the economic returns of biogas projects. Herein, catalytic liquefaction of pig manure fermentation residue to produce biocrude oil was investigated using various alkaline catalysts at 340 ℃ with ethanol as the solvent. Biocrude oils were analyzed by elemental analysis, gas chromatography-mass spectrometry (GC–MS), thermogravimetric analysis, and kinetic analysis. The maximum biocrude oil yield (45.24 wt%) was obtained with the KOH catalyst. Additionally, the biocrude oil produced by the catalysis of CaO exhibited the maximum higher heating value at 44.18 MJ/kg. GC–MS results showed that KOH and K2CO3 considerably increased the content of phenols and hydrocarbons in the biocrude while reducing nitrogenous compounds. All alkaline catalysts effectively reduced the activation energy of biocrude oil compared to biocrude oil without catalyst. The maximum reduction in activation energy (18.73 %) was achieved with the addition of Na2CO3. More importantly, adding CaO not only increased the yield and higher heating value of biocrude oil but also reduced nitrogenous compounds and activation energy, improving the overall yield and quality. Overall, this work provides an effective and promising method to convert pig manure fermentation residue into green high-quality biocrude oil, simultaneously providing an economical and environmentally friendly waste management strategy for the fermentation industry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
期刊最新文献
Editorial Board Recovery and recycling of silica fabric from waste printed circuit boards to develop epoxy composite for electrical and thermal insulation applications Stepping up to the plate: Leadership and local government waste managers opinions of household food waste interventions Generalization abilities of foundation models in waste classification Increased stability of CuFe2O4 oxygen carriers in biomass combustion by Mg doping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1