Investigating the reparability of fusion bonded metal-plastic composites for improved circularity

Christian Gundlach , Klaus Dilger , Sven Hartwig
{"title":"Investigating the reparability of fusion bonded metal-plastic composites for improved circularity","authors":"Christian Gundlach ,&nbsp;Klaus Dilger ,&nbsp;Sven Hartwig","doi":"10.1016/j.procir.2024.09.018","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-material structures have long been established for various components in the automotive industry in the context of lightweight construction, with metal and fiber-reinforced plastic in particular being advantageously joined together in the form of so-called hybrid designs. The joining technology plays a decisive role here with regard to the hybrid component's performance and aging resistance. However, the complexity of component manufacture and the feasibility of subsequent repair, reprocessing and recycling concepts are largely determined by the choice of joining technology. The aim of the present work is to investigate the reparability of joints produced fusion bonding on a fundamental level. Lap shear specimens consisting of a laser-structured, metallic joining partner and a fiber-reinforced thermoplastic (FRTP) sheet are used as a basis for evaluation. The test sequence comprises an initial joining and three consecutive repair processes of the joint by means of fusion bonding, with a destructive lap shear test taking place after each joining process. Two repair approaches (with and without an additional polyamide-6 film) are investigated. Over three repair processes, a slightly decreasing trend in lap shear strength is found if the repair is carried out without additional polyamide-6 film. Using a polyamide-6 film during the repair leads to higher strength in every case tested. Thermal analysis and microindentation on the FRTP substrate takes place in order to quantify the influence of the heating required for repair. A negative effect on the degree of crystallinity and the strength of the polyamide-6 matrix close to the steel-FRTP interface is found. Nevertheless, based on the criteria derived from DIN EN 45554, the conclusion is drawn that the reparability of metal-FRTP joints produced by fusion bonding is possible on a sample scale. For future work, a more in-depth study of the joining surfaces, especially the metal part, as well as the inclusion of an aging step before each lap shear test should be considered.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"131 ","pages":"Pages 113-118"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125000587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-material structures have long been established for various components in the automotive industry in the context of lightweight construction, with metal and fiber-reinforced plastic in particular being advantageously joined together in the form of so-called hybrid designs. The joining technology plays a decisive role here with regard to the hybrid component's performance and aging resistance. However, the complexity of component manufacture and the feasibility of subsequent repair, reprocessing and recycling concepts are largely determined by the choice of joining technology. The aim of the present work is to investigate the reparability of joints produced fusion bonding on a fundamental level. Lap shear specimens consisting of a laser-structured, metallic joining partner and a fiber-reinforced thermoplastic (FRTP) sheet are used as a basis for evaluation. The test sequence comprises an initial joining and three consecutive repair processes of the joint by means of fusion bonding, with a destructive lap shear test taking place after each joining process. Two repair approaches (with and without an additional polyamide-6 film) are investigated. Over three repair processes, a slightly decreasing trend in lap shear strength is found if the repair is carried out without additional polyamide-6 film. Using a polyamide-6 film during the repair leads to higher strength in every case tested. Thermal analysis and microindentation on the FRTP substrate takes place in order to quantify the influence of the heating required for repair. A negative effect on the degree of crystallinity and the strength of the polyamide-6 matrix close to the steel-FRTP interface is found. Nevertheless, based on the criteria derived from DIN EN 45554, the conclusion is drawn that the reparability of metal-FRTP joints produced by fusion bonding is possible on a sample scale. For future work, a more in-depth study of the joining surfaces, especially the metal part, as well as the inclusion of an aging step before each lap shear test should be considered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
期刊最新文献
Machining of large CFRP-components with industrial robots with hybrid drives Temperature distribution inside composite and fiber metal laminates during modified cure cycles A novel method for carbon fiber reinforced thermoplastics production combining single point incremental forming and 3D printing Mechanical and self-monitoring properties of coextrusion 3D printed continuous carbon fibre reinforced polymer composites Experimental study on drilling machinability of CFRP: Tool geometry, hole quality and process monitoring analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1