Towards resource-efficient reactive and proactive auto-scaling for microservice architectures

IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Journal of Systems and Software Pub Date : 2025-02-25 DOI:10.1016/j.jss.2025.112390
Hussain Ahmad , Christoph Treude , Markus Wagner , Claudia Szabo
{"title":"Towards resource-efficient reactive and proactive auto-scaling for microservice architectures","authors":"Hussain Ahmad ,&nbsp;Christoph Treude ,&nbsp;Markus Wagner ,&nbsp;Claudia Szabo","doi":"10.1016/j.jss.2025.112390","DOIUrl":null,"url":null,"abstract":"<div><div>Microservice architectures have become increasingly popular in both academia and industry, providing enhanced agility, elasticity, and maintainability in software development and deployment. To simplify scaling operations in microservice architectures, container orchestration platforms such as Kubernetes feature Horizontal Pod Auto-scalers (HPAs) designed to adjust the resources of microservices to accommodate fluctuating workloads. However, existing HPAs are not suitable for resource-constrained environments, as they make scaling decisions based on the individual resource capacities of microservices, leading to service unavailability, resource mismanagement, and financial losses. Furthermore, the inherent delay in initializing and terminating microservice pods hinders HPAs from timely responding to workload fluctuations, further exacerbating these issues. To address these concerns, we propose Smart HPA and ProSmart HPA, reactive and proactive resource-efficient horizontal pod auto-scalers respectively. Smart HPA employs a reactive scaling policy that facilitates resource exchange among microservices, optimizing auto-scaling in resource-constrained environments. For ProSmart HPA, we develop a machine-learning-driven resource-efficient scaling policy that proactively manages resource demands to address delays caused by microservice pod startup and termination, while enabling preemptive resource sharing in resource-constrained environments. Our experimental results show that Smart HPA outperforms the Kubernetes baseline HPA, while ProSmart HPA exceeds both Smart HPA and Kubernetes HPA by reducing resource overutilization, overprovisioning, and underprovisioning, and increasing resource allocation to microservice applications.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"225 ","pages":"Article 112390"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121225000585","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Microservice architectures have become increasingly popular in both academia and industry, providing enhanced agility, elasticity, and maintainability in software development and deployment. To simplify scaling operations in microservice architectures, container orchestration platforms such as Kubernetes feature Horizontal Pod Auto-scalers (HPAs) designed to adjust the resources of microservices to accommodate fluctuating workloads. However, existing HPAs are not suitable for resource-constrained environments, as they make scaling decisions based on the individual resource capacities of microservices, leading to service unavailability, resource mismanagement, and financial losses. Furthermore, the inherent delay in initializing and terminating microservice pods hinders HPAs from timely responding to workload fluctuations, further exacerbating these issues. To address these concerns, we propose Smart HPA and ProSmart HPA, reactive and proactive resource-efficient horizontal pod auto-scalers respectively. Smart HPA employs a reactive scaling policy that facilitates resource exchange among microservices, optimizing auto-scaling in resource-constrained environments. For ProSmart HPA, we develop a machine-learning-driven resource-efficient scaling policy that proactively manages resource demands to address delays caused by microservice pod startup and termination, while enabling preemptive resource sharing in resource-constrained environments. Our experimental results show that Smart HPA outperforms the Kubernetes baseline HPA, while ProSmart HPA exceeds both Smart HPA and Kubernetes HPA by reducing resource overutilization, overprovisioning, and underprovisioning, and increasing resource allocation to microservice applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Systems and Software
Journal of Systems and Software 工程技术-计算机:理论方法
CiteScore
8.60
自引率
5.70%
发文量
193
审稿时长
16 weeks
期刊介绍: The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to: •Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution •Agile, model-driven, service-oriented, open source and global software development •Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems •Human factors and management concerns of software development •Data management and big data issues of software systems •Metrics and evaluation, data mining of software development resources •Business and economic aspects of software development processes The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.
期刊最新文献
Editorial Board Sóley: Automated detection of logic vulnerabilities in Ethereum smart contracts using large language models Editorial Board Pandemic pedagogy: Evaluating remote education strategies during COVID-19 Towards resource-efficient reactive and proactive auto-scaling for microservice architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1