Yongjian Wang , Yadan Wang , Zhongmou Zhang , Kailing Xu , Qiufang Fang , Xianfu Wu , Shuangcheng Ma
{"title":"Molecular networking: An efficient tool for discovering and identifying natural products","authors":"Yongjian Wang , Yadan Wang , Zhongmou Zhang , Kailing Xu , Qiufang Fang , Xianfu Wu , Shuangcheng Ma","doi":"10.1016/j.jpba.2025.116741","DOIUrl":null,"url":null,"abstract":"<div><div>Natural products (NPs), play a crucial role in drug development. However, the discovery of NPs is accidental, and conventional identification methods lack accuracy. To overcome these challenges, an increasing number of researchers are directing their attention to Molecular networking (MN). MN based on secondary mass spectrometry has become an important tool for the separation, purification and structural identification of NPs. However, most new tools are not well known. This review started with the most basic MN tool and explains it from the principle, workflow, and application. Then introduce the principles and workflows of the remaining eight new types of MN tools. The reliability of various MNs is mainly verified based on the application of phytochemistry and metabolomics. Subsequently, the principles and applications of 12 structural annotation tools are introduced. For the first time, the scope of 9 kinds of MN tools is compared horizontally, and 12 kinds of structured annotation tools are classified from the type of compound structure suitable for identification. The advantages and disadvantages of various tools are summarized, and make suggestions for future application directions and the development of computing tools in this review. MN tools are expected to enhance the efficiency of the discovery and identification in NPs.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"259 ","pages":"Article 116741"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708525000822","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Natural products (NPs), play a crucial role in drug development. However, the discovery of NPs is accidental, and conventional identification methods lack accuracy. To overcome these challenges, an increasing number of researchers are directing their attention to Molecular networking (MN). MN based on secondary mass spectrometry has become an important tool for the separation, purification and structural identification of NPs. However, most new tools are not well known. This review started with the most basic MN tool and explains it from the principle, workflow, and application. Then introduce the principles and workflows of the remaining eight new types of MN tools. The reliability of various MNs is mainly verified based on the application of phytochemistry and metabolomics. Subsequently, the principles and applications of 12 structural annotation tools are introduced. For the first time, the scope of 9 kinds of MN tools is compared horizontally, and 12 kinds of structured annotation tools are classified from the type of compound structure suitable for identification. The advantages and disadvantages of various tools are summarized, and make suggestions for future application directions and the development of computing tools in this review. MN tools are expected to enhance the efficiency of the discovery and identification in NPs.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.