Impact of distributed Bragg reflectors on the intrinsic detection efficiency of superconducting nanowire single-photon detectors

IF 5.6 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Superconductivity Pub Date : 2025-03-01 DOI:10.1016/j.supcon.2025.100152
Hongxin Xu , Hailong Han , You Xiao , Jiamin Xiong , Chaomeng Ding , Zhiyun Shu , Yuchi Li , Xiaoyu Liu , Lixing You , Zhen Wang , Hao Li
{"title":"Impact of distributed Bragg reflectors on the intrinsic detection efficiency of superconducting nanowire single-photon detectors","authors":"Hongxin Xu ,&nbsp;Hailong Han ,&nbsp;You Xiao ,&nbsp;Jiamin Xiong ,&nbsp;Chaomeng Ding ,&nbsp;Zhiyun Shu ,&nbsp;Yuchi Li ,&nbsp;Xiaoyu Liu ,&nbsp;Lixing You ,&nbsp;Zhen Wang ,&nbsp;Hao Li","doi":"10.1016/j.supcon.2025.100152","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the impact of substrates with distributed Bragg reflectors (DBRs) on the proximity effect during the fabrication of superconducting nanowire single-photon detectors (SNSPDs) using electron beam lithography. We compare the linewidth compression and line edge roughness of nanowires prepared on three different DBRs substrates. Additionally, we characterize the variations in switching current (I<span><math><msub><mrow></mrow><mrow><mi>s</mi><mi>w</mi></mrow></msub></math></span>) and intrinsic detection efficiency (IDE) at a 2.2-K temperature. The results show that when the substrates are composed of low atomic number materials, such as Si and SiO<sub>2</sub>, the proximity effect is significantly mitigated. As a consequence, the lithography quality of nanowires is effectively improved, thus enhancing the IDE of SNSPDs. This study is expected to provide new insights into the fabrication of SNSPDs and lay the foundation for the preparation of high-performance and high-uniformity large-area devices.</div></div>","PeriodicalId":101185,"journal":{"name":"Superconductivity","volume":"13 ","pages":"Article 100152"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772830725000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the impact of substrates with distributed Bragg reflectors (DBRs) on the proximity effect during the fabrication of superconducting nanowire single-photon detectors (SNSPDs) using electron beam lithography. We compare the linewidth compression and line edge roughness of nanowires prepared on three different DBRs substrates. Additionally, we characterize the variations in switching current (Isw) and intrinsic detection efficiency (IDE) at a 2.2-K temperature. The results show that when the substrates are composed of low atomic number materials, such as Si and SiO2, the proximity effect is significantly mitigated. As a consequence, the lithography quality of nanowires is effectively improved, thus enhancing the IDE of SNSPDs. This study is expected to provide new insights into the fabrication of SNSPDs and lay the foundation for the preparation of high-performance and high-uniformity large-area devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Impact of distributed Bragg reflectors on the intrinsic detection efficiency of superconducting nanowire single-photon detectors The superconducting magnet development for the next generation ECR ion source on LEAF Evolution of superconductivity and corresponding electronic structure in pressurized Nb3Sn Mechanical and electromagnetic characteristics of MgB2 wires & Cable-in-Conduit Conductors for fusion magnet application Microstructural evolution mechanism of Ba0.6KαFe2As2 Cu/Ag composite sheathed superconducting tapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1