Enhanced optical and electrical properties of NiO-GO composite thin films on flexible PET substrates for optoelectronic applications

Bandhna Verma , Ashish Kumar , H.C. Swart , Vinay Kumar
{"title":"Enhanced optical and electrical properties of NiO-GO composite thin films on flexible PET substrates for optoelectronic applications","authors":"Bandhna Verma ,&nbsp;Ashish Kumar ,&nbsp;H.C. Swart ,&nbsp;Vinay Kumar","doi":"10.1016/j.cinorg.2025.100097","DOIUrl":null,"url":null,"abstract":"<div><div>In the present work, we have reported the nickel oxide (NiO)-graphene oxide (GO) composite thin films on flexible indium tin oxide-coated poly-ethyleneterephthalate (ITO PET) substrates by a simple solution processing approach (spin coating method). The dispersion of GO nanostructures (synthesized by the modified Hummers' method) was introduced in the NiO (synthesized by the hydrothermal method) dispersion solution in different volume ratios of 1:0, 1:0.2, 1:0.5, and 1:1; and the corresponding thin films were named as NG 0, NG 2, NG 5, and NG 10, respectively. The zeta potential study reveals the moderate stability of the prepared dispersions, and the hydrodynamic diameter increases with GO inclusion in NiO dispersion. The variation of GO concentrations on the structural, morphological, optical, and electrical properties of thin films was investigated. Powder X-ray diffraction (PXRD) results reveal the crystalline structure of thin films. The morphology of the films was investigated by field emission scanning electron microscopy (FESEM), which shows the more ordered and porous hexagonal network obtained for composite films. The UV-VIS-NIR study reveals the optical properties of thin films. The optical absorption increases in the visible region with an increase in GO concentrations in composite films, and a decrease in band gap from 3.88 ​eV to 3.50 ​eV was observed for NG 2 to NG 10 thin films. The presence of Ni–O stretching and C<img>C stretching, as well as carbon bonding with oxygen functionalities, were also confirmed by Fourier Transform Infrared (FTIR) spectroscopy. The current-voltage characteristics were measured, and the corresponding resistance of the thin films was obtained in the range of MΩ. The experimental result demonstrates the decrease in resistivity and increase in current for both forward and reverse bias ranges with the incorporation of GO in NiO thin films. The obtained results highlight the possibility of using these composite thin films for achieving good performance and suitability for flexible optoelectronic applications.</div></div>","PeriodicalId":100233,"journal":{"name":"Chemistry of Inorganic Materials","volume":"5 ","pages":"Article 100097"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Inorganic Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949746925000114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, we have reported the nickel oxide (NiO)-graphene oxide (GO) composite thin films on flexible indium tin oxide-coated poly-ethyleneterephthalate (ITO PET) substrates by a simple solution processing approach (spin coating method). The dispersion of GO nanostructures (synthesized by the modified Hummers' method) was introduced in the NiO (synthesized by the hydrothermal method) dispersion solution in different volume ratios of 1:0, 1:0.2, 1:0.5, and 1:1; and the corresponding thin films were named as NG 0, NG 2, NG 5, and NG 10, respectively. The zeta potential study reveals the moderate stability of the prepared dispersions, and the hydrodynamic diameter increases with GO inclusion in NiO dispersion. The variation of GO concentrations on the structural, morphological, optical, and electrical properties of thin films was investigated. Powder X-ray diffraction (PXRD) results reveal the crystalline structure of thin films. The morphology of the films was investigated by field emission scanning electron microscopy (FESEM), which shows the more ordered and porous hexagonal network obtained for composite films. The UV-VIS-NIR study reveals the optical properties of thin films. The optical absorption increases in the visible region with an increase in GO concentrations in composite films, and a decrease in band gap from 3.88 ​eV to 3.50 ​eV was observed for NG 2 to NG 10 thin films. The presence of Ni–O stretching and CC stretching, as well as carbon bonding with oxygen functionalities, were also confirmed by Fourier Transform Infrared (FTIR) spectroscopy. The current-voltage characteristics were measured, and the corresponding resistance of the thin films was obtained in the range of MΩ. The experimental result demonstrates the decrease in resistivity and increase in current for both forward and reverse bias ranges with the incorporation of GO in NiO thin films. The obtained results highlight the possibility of using these composite thin films for achieving good performance and suitability for flexible optoelectronic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multifunctional silver-doped strontium hexaferrite nanoparticles: Magnetic, optical, photocatalytic, and antimicrobial properties Enhanced optical and electrical properties of NiO-GO composite thin films on flexible PET substrates for optoelectronic applications Characteristics of Mg-based cathode materials with different doping element concentrations Comparative study on photocatalytic efficiency of Mg doped CuFeO2 versus TiO2 doped CuFeO2 delafossite based on their application for the removal of tartrazine yellow dye Ag(I) decorated isomeric triazine complexes as efficient hydrogen storage materials - A theoretical investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1