CRISPR/dCas9-KRAB mediated transcriptional suppression of NtbHLH47 enhances tolerance to iron stress and modulates iron content in tobacco

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Science Pub Date : 2025-02-25 DOI:10.1016/j.plantsci.2025.112449
Anshu Alok , Hanny Chauhan , Biswaranjan Rout , Ashutosh Pandey , Kashmir Singh
{"title":"CRISPR/dCas9-KRAB mediated transcriptional suppression of NtbHLH47 enhances tolerance to iron stress and modulates iron content in tobacco","authors":"Anshu Alok ,&nbsp;Hanny Chauhan ,&nbsp;Biswaranjan Rout ,&nbsp;Ashutosh Pandey ,&nbsp;Kashmir Singh","doi":"10.1016/j.plantsci.2025.112449","DOIUrl":null,"url":null,"abstract":"<div><div>Iron homeostasis is a multifaceted regulatory process that needs to be studied to elucidate iron distribution, uptake, and storage in plants. <em>NtbHLH47,</em> a homologue to <em>AtbHLH47</em>, is a negative regulator of iron. The current study deploys CRISPR interference-dCas9-KRAB (Krüppel-associated box) in the transcriptional suppression of <em>NtbHLH47</em> and its effect on iron uptake by plants. The pHSN6I01 harbouring dCas9-KRAB and gRNA targeting <em>NtbHHLH47</em> was constructed. Four gRNAs were designed, G1, G2, G3, and G4, located at + 19, + 111, + 232, and + 335 bp upstream from the ATG start codon in the promoter region of <em>NtbHLH47</em>. The <em>NtbHLH47</em> was repressed in the developed transgenic lines of tobacco and the qRT-PCR analysis showed that target sites G1 and G2 suppressed <em>NtbHLH47</em> effectively. The transgenic pHSN6I01 +G1 plants were tolerant to the elevated levels of iron, copper, zinc, and magnesium. The root Ferric chelate reductase activity of pHSN6I01 +G1 lines was reduced against wild type. The Perl staining showed high iron content in the roots of the pHSN6I01 +G1 plants. ICP-MS analysis showed increased Fe content in the roots of pHSN6I01 +G1 line suggesting that <em>NtbHLH47</em> modulates it. The expression of <em>NtbHLH38, NtbHLH100, NtbHLH101,</em> and <em>NtFIT</em> was found to be upregulated in the pHSN6I01 +G1 line. This is the first report of using CRISPRi based on dCas9-KRAB in tobacco and its application in the functional validation of a gene. Using this, <em>NtbHLH47</em> was transcriptionally suppressed and the generated lines expressed increased levels of iron in the roots of <em>N. tabacum</em> and gave insight in the iron homeostasis.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"354 ","pages":"Article 112449"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945225000676","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Iron homeostasis is a multifaceted regulatory process that needs to be studied to elucidate iron distribution, uptake, and storage in plants. NtbHLH47, a homologue to AtbHLH47, is a negative regulator of iron. The current study deploys CRISPR interference-dCas9-KRAB (Krüppel-associated box) in the transcriptional suppression of NtbHLH47 and its effect on iron uptake by plants. The pHSN6I01 harbouring dCas9-KRAB and gRNA targeting NtbHHLH47 was constructed. Four gRNAs were designed, G1, G2, G3, and G4, located at + 19, + 111, + 232, and + 335 bp upstream from the ATG start codon in the promoter region of NtbHLH47. The NtbHLH47 was repressed in the developed transgenic lines of tobacco and the qRT-PCR analysis showed that target sites G1 and G2 suppressed NtbHLH47 effectively. The transgenic pHSN6I01 +G1 plants were tolerant to the elevated levels of iron, copper, zinc, and magnesium. The root Ferric chelate reductase activity of pHSN6I01 +G1 lines was reduced against wild type. The Perl staining showed high iron content in the roots of the pHSN6I01 +G1 plants. ICP-MS analysis showed increased Fe content in the roots of pHSN6I01 +G1 line suggesting that NtbHLH47 modulates it. The expression of NtbHLH38, NtbHLH100, NtbHLH101, and NtFIT was found to be upregulated in the pHSN6I01 +G1 line. This is the first report of using CRISPRi based on dCas9-KRAB in tobacco and its application in the functional validation of a gene. Using this, NtbHLH47 was transcriptionally suppressed and the generated lines expressed increased levels of iron in the roots of N. tabacum and gave insight in the iron homeostasis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Science
Plant Science 生物-生化与分子生物学
CiteScore
9.10
自引率
1.90%
发文量
322
审稿时长
33 days
期刊介绍: Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment. Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.
期刊最新文献
Editorial Board CRISPR/dCas9-KRAB mediated transcriptional suppression of NtbHLH47 enhances tolerance to iron stress and modulates iron content in tobacco Intronic alternative polyadenylation in MdMYB1 regulates fruit coloration in apple. SmGRAS5 acts as a positive regulator in GA-induced biosynthesis of tanshinones in Salvia miltiorrhiza hairy roots Rhizospheric crosstalk: A mechanistic overview of how plant secondary metabolites alleviate abiotic stresses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1