Mechanistic investigation of repurposed photoenzymes with new-to-nature reactivity

IF 9.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Current Opinion in Green and Sustainable Chemistry Pub Date : 2025-02-27 DOI:10.1016/j.cogsc.2025.101009
Zhengyi Zhang , Maolin Li , Huimin Zhao
{"title":"Mechanistic investigation of repurposed photoenzymes with new-to-nature reactivity","authors":"Zhengyi Zhang ,&nbsp;Maolin Li ,&nbsp;Huimin Zhao","doi":"10.1016/j.cogsc.2025.101009","DOIUrl":null,"url":null,"abstract":"<div><div>Biocatalysis is widely renowned for its remarkable efficiency, selectivity, and known for operating under mild conditions. While most enzymatic reactions progress without light irradiation, recent studies have identified light as a crucial factor in the activation of certain naturally occurring enzymes. These findings have spurred the rapid advancement of photoenzymatic catalysis in the past few years, where enzymes are not typically known for light activation perform excited-state chemistry with or without the presence of external photocatalysts to facilitate new-to-nature transformations that are challenging for traditional chemical synthesis. In this review, we summarize the experimental and computational methods used to investigate the catalytic mechanisms of repurposed photoenzymes with new-to-nature reactivity and discuss how these insights can inform the design of new photoenzymatic catalytic systems.</div></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"52 ","pages":"Article 101009"},"PeriodicalIF":9.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452223625000136","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biocatalysis is widely renowned for its remarkable efficiency, selectivity, and known for operating under mild conditions. While most enzymatic reactions progress without light irradiation, recent studies have identified light as a crucial factor in the activation of certain naturally occurring enzymes. These findings have spurred the rapid advancement of photoenzymatic catalysis in the past few years, where enzymes are not typically known for light activation perform excited-state chemistry with or without the presence of external photocatalysts to facilitate new-to-nature transformations that are challenging for traditional chemical synthesis. In this review, we summarize the experimental and computational methods used to investigate the catalytic mechanisms of repurposed photoenzymes with new-to-nature reactivity and discuss how these insights can inform the design of new photoenzymatic catalytic systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.00
自引率
2.20%
发文量
140
审稿时长
103 days
期刊介绍: The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.
期刊最新文献
Generative artificial intelligence for enzyme design: Recent advances in models and applications Mechanistic investigation of repurposed photoenzymes with new-to-nature reactivity Information systems-driven multi-disciplinary approaches to sustainability and circular economy Tandem plasma electrocatalysis: An emerging pathway for sustainable ammonia production Fundamental insights and emerging opportunities in plasma catalysis for light alkane conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1