{"title":"Voltage-controlled skyrmion manipulation chambers for neuromorphic computing","authors":"Zulfidin Khodzhaev, Jean Anne C. Incorvia","doi":"10.1016/j.cossms.2025.101220","DOIUrl":null,"url":null,"abstract":"<div><div>Voltage-controlled magnetic skyrmion manipulation has emerged as a promising approach for designing high-density and low-power magnetic devices. This paper investigates the potential of magnetic skyrmion manipulation chambers for such devices, focusing on applications in neuromorphic computing systems. Here, a comprehensive analysis of the properties and characteristics of magnetic skyrmions, their manipulation techniques, and their suitability for magnetic devices is presented. The findings suggest that voltage-controlled skyrmion manipulation chambers have significant advantages over conventional technologies for applications such as high-density data storage, low-power spintronic devices, and adaptable neuromorphic computing systems. These advantages stem from the unique properties of skyrmions, including their topological stability, nanoscale dimensions, and efficient manipulation through voltage control. Furthermore, the dynamic rearrangement capabilities of skyrmion manipulation chambers make them ideal for implementing adaptable neuromorphic architectures and low-power skyrmion-based synaptic devices. This study provides a foundation for further research and development in skyrmion manipulation chambers to realize their potential in neuromorphic computing systems.</div></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"35 ","pages":"Article 101220"},"PeriodicalIF":12.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028625000075","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Voltage-controlled magnetic skyrmion manipulation has emerged as a promising approach for designing high-density and low-power magnetic devices. This paper investigates the potential of magnetic skyrmion manipulation chambers for such devices, focusing on applications in neuromorphic computing systems. Here, a comprehensive analysis of the properties and characteristics of magnetic skyrmions, their manipulation techniques, and their suitability for magnetic devices is presented. The findings suggest that voltage-controlled skyrmion manipulation chambers have significant advantages over conventional technologies for applications such as high-density data storage, low-power spintronic devices, and adaptable neuromorphic computing systems. These advantages stem from the unique properties of skyrmions, including their topological stability, nanoscale dimensions, and efficient manipulation through voltage control. Furthermore, the dynamic rearrangement capabilities of skyrmion manipulation chambers make them ideal for implementing adaptable neuromorphic architectures and low-power skyrmion-based synaptic devices. This study provides a foundation for further research and development in skyrmion manipulation chambers to realize their potential in neuromorphic computing systems.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field