Hanyun Wang , Wenke Li , Huixin Fan , Song Ji , Chenguang Dai , Yongsheng Zhang , Jin Chen , Yulan Guo , Longguang Wang
{"title":"PhaseVSRnet: Deep complex network for phase-based satellite video super-resolution","authors":"Hanyun Wang , Wenke Li , Huixin Fan , Song Ji , Chenguang Dai , Yongsheng Zhang , Jin Chen , Yulan Guo , Longguang Wang","doi":"10.1016/j.jag.2025.104418","DOIUrl":null,"url":null,"abstract":"<div><div>Satellite video super-resolution (SR) aims to generate high-resolution (HR) frames from multiple low-resolution (LR) frames. To exploit motion cues under complicated motion patterns, most CNN-based methods first perform motion compensation and then aggregate motion cues in aligned frames (features). However, due to the low spatial resolution of satellite videos, the moving scales are usually subtle and difficult to be captured in the spatial domain. Furthermore, various scales of moving objects challenge current satellite video SR methods in motion estimation and compensation. To address these challenges for satellite video SR, we propose PhaseVSRnet to convert satellite video frames into the phase domain. By representing the motion information with phase shifts, the subtle motions are enlarged in the phase domain. Specifically, our PhaseVSRnet employs deep complex convolutions to better exploit the inherent correlation of complex-valued decompositions obtained by complex-valued steerable pyramids. Then, we adopt a coarse-to-fine motion compensation mechanism to eliminate phase ambiguity at different levels. Finally, in hierarchical reconstruction stage, we use the multi-scale fusion module to aggregate features from multiple levels and use an upsampling layer to upsample the feature maps for resolution enhancement. With PhaseVSRnet, we effectively address the subtle motions and varying scales of moving objects in satellite videos. We assess its performance on a satellite video SR dataset from Jilin-1 satellites and evaluate its generalization ability on another SR dataset from OVS-1 satellites. The results show that PhaseVSRnet effectively captures motion cues in the phase domain and exhibits strong generalization capability across different satellite sensors in unseen scenarios.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"138 ","pages":"Article 104418"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225000652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Satellite video super-resolution (SR) aims to generate high-resolution (HR) frames from multiple low-resolution (LR) frames. To exploit motion cues under complicated motion patterns, most CNN-based methods first perform motion compensation and then aggregate motion cues in aligned frames (features). However, due to the low spatial resolution of satellite videos, the moving scales are usually subtle and difficult to be captured in the spatial domain. Furthermore, various scales of moving objects challenge current satellite video SR methods in motion estimation and compensation. To address these challenges for satellite video SR, we propose PhaseVSRnet to convert satellite video frames into the phase domain. By representing the motion information with phase shifts, the subtle motions are enlarged in the phase domain. Specifically, our PhaseVSRnet employs deep complex convolutions to better exploit the inherent correlation of complex-valued decompositions obtained by complex-valued steerable pyramids. Then, we adopt a coarse-to-fine motion compensation mechanism to eliminate phase ambiguity at different levels. Finally, in hierarchical reconstruction stage, we use the multi-scale fusion module to aggregate features from multiple levels and use an upsampling layer to upsample the feature maps for resolution enhancement. With PhaseVSRnet, we effectively address the subtle motions and varying scales of moving objects in satellite videos. We assess its performance on a satellite video SR dataset from Jilin-1 satellites and evaluate its generalization ability on another SR dataset from OVS-1 satellites. The results show that PhaseVSRnet effectively captures motion cues in the phase domain and exhibits strong generalization capability across different satellite sensors in unseen scenarios.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.