Wen Li , Yuanzhi Weng , Renfei Zong , Miao Wei , Chen Zheng , Minghao Wu , Wenqin Zhou , Jiayi Pu , William Lu , Fajin Lv
{"title":"Automatic phantom-less calibration of routine CT scans for the evaluation of osteoporosis and hip fracture risk","authors":"Wen Li , Yuanzhi Weng , Renfei Zong , Miao Wei , Chen Zheng , Minghao Wu , Wenqin Zhou , Jiayi Pu , William Lu , Fajin Lv","doi":"10.1016/j.bone.2025.117431","DOIUrl":null,"url":null,"abstract":"<div><div>Background/Purpose.</div><div>The diagnosis of osteoporosis remains a paramount concern for orthopedic surgeons worldwide. We aim to (1) evaluate the efficacy of automatic phantom-less quantitative computed tomography (PL-QCT) in diagnosing osteoporosis and (2) investigate its clinical value in predicting hip fracture risk.</div></div><div><h3>Methods</h3><div>A cohort of 705 patients was included in the study. Hip CT scans from 310 patients and spinal CT scans from 315 patients were analyzed using automatic PL-QCT. The consistency of bone mineral density (BMD) measurement obtained by dual-energy X-ray absorptiometry (DXA), phantom-based QCT (PB-QCT), and automatic PL-QCT was examined through linear regression analysis and Bland-Altman plots. The ability of automatic PL-QCT to predict osteoporosis and hip fracture risk was assessed using ROC analysis.</div></div><div><h3>Results</h3><div>Linear regression and Bland-Altman plots demonstrated a high level of agreement between BMD measurements from PL-QCT and those from hip DXA and lumbar PB-QCT. The AUC values for PL-QCT and PB-QCT in diagnosing osteoporosis were 0.903 (95 % CI 0.852–0.955) and 0.900 (95 % CI 0.847–0.953). The AUC values for predicting hip fracture risk, based on femoral neck BMD measured by PL-QCT and DXA, were 0.869 (95 % CI 0.823–0.915) and 0.831(95 % CI 0.778–0.885), respectively. When the femoral neck BMD was combined with the percentage of inter-muscular adipose tissue area, the AUC increased to 0.929 (95 % CI 0.897–0.961).</div></div><div><h3>Conclusion</h3><div>Automatic PL-QCT has shown superior performance in predicting hip fracture risk compared to DXA. Furthermore, the novel PL-QCT demonstrates comparable predictive efficacy to that of PB-QCT, suggesting its potential as a valuable tool in clinical practice.</div></div>","PeriodicalId":9301,"journal":{"name":"Bone","volume":"194 ","pages":"Article 117431"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S8756328225000432","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Purpose.
The diagnosis of osteoporosis remains a paramount concern for orthopedic surgeons worldwide. We aim to (1) evaluate the efficacy of automatic phantom-less quantitative computed tomography (PL-QCT) in diagnosing osteoporosis and (2) investigate its clinical value in predicting hip fracture risk.
Methods
A cohort of 705 patients was included in the study. Hip CT scans from 310 patients and spinal CT scans from 315 patients were analyzed using automatic PL-QCT. The consistency of bone mineral density (BMD) measurement obtained by dual-energy X-ray absorptiometry (DXA), phantom-based QCT (PB-QCT), and automatic PL-QCT was examined through linear regression analysis and Bland-Altman plots. The ability of automatic PL-QCT to predict osteoporosis and hip fracture risk was assessed using ROC analysis.
Results
Linear regression and Bland-Altman plots demonstrated a high level of agreement between BMD measurements from PL-QCT and those from hip DXA and lumbar PB-QCT. The AUC values for PL-QCT and PB-QCT in diagnosing osteoporosis were 0.903 (95 % CI 0.852–0.955) and 0.900 (95 % CI 0.847–0.953). The AUC values for predicting hip fracture risk, based on femoral neck BMD measured by PL-QCT and DXA, were 0.869 (95 % CI 0.823–0.915) and 0.831(95 % CI 0.778–0.885), respectively. When the femoral neck BMD was combined with the percentage of inter-muscular adipose tissue area, the AUC increased to 0.929 (95 % CI 0.897–0.961).
Conclusion
Automatic PL-QCT has shown superior performance in predicting hip fracture risk compared to DXA. Furthermore, the novel PL-QCT demonstrates comparable predictive efficacy to that of PB-QCT, suggesting its potential as a valuable tool in clinical practice.
期刊介绍:
BONE is an interdisciplinary forum for the rapid publication of original articles and reviews on basic, translational, and clinical aspects of bone and mineral metabolism. The Journal also encourages submissions related to interactions of bone with other organ systems, including cartilage, endocrine, muscle, fat, neural, vascular, gastrointestinal, hematopoietic, and immune systems. Particular attention is placed on the application of experimental studies to clinical practice.